

    
      Navigation

      
        	
          index

        	
          modules |

        	
          next |

        	Morepath 0.3 documentation 
 
      

    


    
      
          
            
  
Documentation


Table of Contents



	Morepath: Super Powered Python Web Framework
	Morepath Super Powers

	Morepath Knows About Your Models

	More documentation, please!





	Quickstart
	Hello world

	Code Walkthrough

	Routing

	Request object

	Redirects

	HTTP Errors





	Installation
	Quick and Dirty Installation

	Creating a Morepath Project

	Depending on Morepath development versions





	Superpowers
	Link with Ease

	Generic UI

	Model-driven Permissions

	Composable Views

	Extensible Applications





	Paths and Linking
	Introduction

	Paths

	URL parameters

	Extra URL parameters

	Linking

	Linking with path variables

	Linking with URL parameters

	Type hints

	Conversion

	Default converters

	Type hints and converters

	List converters

	get_converters

	Required

	Absorbing





	Views
	Introduction

	Named views

	Default views

	Generic views

	Details

	Ambiguity between path and view

	render

	Permissions

	Manipulating the response

	request_method

	Predicates

	request.view

	Exception views





	Security
	Introduction

	Identity

	Verify identity

	Session or ticket identity verification

	Login and logout

	Permissions

	Permission rules

	Morepath Super Powers Go!





	REST
	Introduction

	Elements of REST

	HTTP as a transport system

	Modeling as resources

	HTTP methods

	HTTP response status codes

	Linking: HATEOAS

	Compose from reusable apps





	Settings
	Introduction

	Defining a setting

	Accessing a setting

	Defining multiple settings





	Organizing your Project
	Introduction

	Python project

	Project layout

	Project setup

	Project naming

	Namespace packages

	Main Module

	Model module

	Path module

	View module





	App Reuse
	Application Isolation

	Application Extension

	Application Overrides

	Nesting Applications

	Linking to other mounted apps

	Application Reuse

	Further reading





	Building Large Applications
	Introduction

	A Code Hosting Site

	Simplest approach

	Problems

	Multiple sub-apps

	Mounting apps

	No more path repetition

	Testing in isolation

	Reusing an app

	Different teams

	Swapping in a new sub-app

	Customizing an app

	Swapping in, for one customer

	Framework apps





	Tweens
	Introduction

	signature of a handler

	Under and over

	What can a tween do?

	Creating a tween factory

	Tweens and settings

	Tweens and apps

	more.transaction





	Morepath API

	Comparison with other Web Frameworks
	Overview

	Routing

	Linking

	View lookup

	WSGI

	Permissions

	Explicit request

	Testability and Global state

	No default database

	No template language

	Code configuration

	Components and Generic functions





	Design Notes
	Publish any model

	Routing

	Traversal

	Linking

	Model is web-agnostic

	View/model separation

	Isolation between applications

	Sharing between applications

	Models can be published once per application

	Linking to another application

	Reusable components

	Declarative

	Conflicts

	Overrides





	Developing Morepath
	Install Morepath for development

	Running the tests

	flake8

	radon





	CHANGES
	0.3 (2014-06-23)

	0.2 (2014-04-24)

	0.1 (2014-04-08)





	History of Morepath
	Web Framework Inspirations

	Configuration system

	Routing system

	Reg

	Publisher

	Combining it all












Indices and tables


	Index

	Module Index

	Search Page









          

      

      

    


    
         Copyright 2013-2014, Morepath developers.
      Created using Sphinx 1.2.2.
    

  

    
      Navigation

      
        	
          index

        	
          modules |

        	
          next |

        	
          previous |

        	Morepath 0.3 documentation 
 
      

    


    
      
          
            
  
Morepath: Super Powered Python Web Framework

Morepath is a Python web microframework, with super powers.

Morepath is an Python WSGI microframework. It uses routing, but the
routing is to models. Morepath is model-driven and flexible, which
makes it expressive.


	Morepath does not get in your way.

	It lets you express what you want, easily. See Quickstart.

	It’s extensible, with a simple, coherent and universal extension and
override mechanism, supporting reusable code. See App Reuse.

	It understands about generating hyperlinks. The web is about
hyperlinks and Morepath actually knows about them. See
Paths and Linking.

	Views are simple functions. Generic views are just views too. See
Views.

	It has all the tools to develop REST web services in the box. See
REST.



Sounds interesting?

Go on the Morepath!


Morepath Super Powers


	Automatic hyperlinks that don’t break.

	Creating generic UIs is as easy as subclassing.

	Simple, flexible, powerful permissions.

	Reuse views in views.

	Extensible apps. Nestable apps. Override apps, even override
Morepath itself!



Curious how Morepath compares with other Python web frameworks? See
Comparison with other Web Frameworks.




Morepath Knows About Your Models

import morepath

app = morepath.App()

class Document(object):
    def __init__(self, id):
        self.id = id

@app.path(path='')
class Root(object):
    pass

@app.path(path='documents/{id}', model=Document)
def get_document(id):
    return Document(id)  # query for doc

@app.html(model=Root)
def hello_root(self, request):
    return '<a href="%s">Go to doc</a>' % request.link(Document('foo'))

@app.html(model=Document)
def hello_doc(self, request):
    return '<p>Hello document: %s!</p>' % self.id

if __name__ == '__main__':
    config = morepath.setup()
    config.scan()
    config.commit()
    morepath.run(app)





Want to know what’s going on? Check out the Quickstart!




More documentation, please!


	Read the documentation



If you have questions, please join the #morepath IRC channel on
freenode. Hope to see you there!







          

      

      

    


    
         Copyright 2013-2014, Morepath developers.
      Created using Sphinx 1.2.2.
    

  

    
      Navigation

      
        	
          index

        	
          modules |

        	
          next |

        	
          previous |

        	Morepath 0.3 documentation 
 
      

    


    
      
          
            
  
Quickstart

Morepath is a micro-framework, and this makes it small and easy to
learn. This quickstart guide should help you get started. We assume
you’ve already installed Morepath; if not, see the Installation
section.


Hello world

Let’s look at a minimal “Hello world!” application in Morepath:

import morepath

app = morepath.App(name='Hello')

@app.path(path='')
class Root(object):
    pass

@app.view(model=Root)
def hello_world(self, request):
    return "Hello world!"

if __name__ == '__main__':
    config = morepath.setup()
    config.scan()
    config.commit()
    morepath.run(app)





You can save this as hello.py and then run it with Python:

$ python hello.py
Running <morepath.App 'Hello'> with wsgiref.simple_server on http://127.0.0.1:5000






Making the server externally accessible

The default configuration of morepath.run() uses the
127.0.0.1 hostname.  This means you can access the web server
from your own computer, but not from anywhere else. During
development this is often the best way to go about things.

But sometimes do want to make the development server accessible from
the outside world. This can be done by passing an explicit host
argument of 0.0.0.0 to the morepath.run() function.


morepath.run(app, host=‘0.0.0.0’)


Note that the built-in web server is absolutely unsuitable for
actual deployment. For those cases don’t use morepath.run() at
all, but instead use an external WSGI server such as waitress [http://pylons.readthedocs.org/projects/waitress/en/latest/],
Apache mod_wsgi [https://modwsgi.readthedocs.org/en/latest/] or nginx mod_wsgi [http://wiki.nginx.org/NgxWSGIModule].



If you now go with a web browser to the URL given, you should see
“Hello world!”  as expected. When you want to stop the server, just
press control-C.

This application is a bit bigger than you might be used to in other
web micro-frameworks. That’s for a reason: Morepath is not geared to
create the most succinct “Hello world!” application but to be
effective for building slightly larger applications, all the way up to
huge ones.

Let’s go through the hello world app step by step to gain a better
understanding.




Code Walkthrough


	We import morepath.



	We create an instance of morepath.App. This is a WSGI
application that we can run. It also contains our application’s
configuration: what models and views are available.



	We then set up a Root class. Morepath is model-driven and in
order to create any views, we first need at least one model, in
this case the empty Root class.

We set up the model as the root of the website (the empty string
'' indicates the root, but '/' works too) using
the morepath.AppBase.path() decorator.



	Now we can create the “Hello world” view. It’s just a function that
takes self and request as arguments (we don’t need to use
either in this case), and returns the string "Hello
world!". The self argument is the instance of the model
class that is being viewed.

We then need to hook up this view with the
morepath.AppBase.view() decorator.  We say it’s associated
with the Root model. Since we supply no explicit name to
the decorator, the function is the default view for the Root
model on /.



	The if __name__ == '__main__' section is a way in Python to
make the code only run if the hello.py module is started
directly with Python as discussed above. In a real-world
application you instead use a setuptools entry point so that a
startup script for your application is created automatically.



	func:morepath.setup sets up Morepath’s default behavior, and
returns a Morepath config object. If your app is in a Python
package and you’ve set up the right install_requires in
setup.py, consider using morepath.autosetup() to be done
in one step.



	We then scan() this module (or package) for configuration
decorators (such as morepath.AppBase.path() and
morepath.AppBase.view()) and cause the registration to be
registered using morepath.Config.commit().

This step ensures your configuration (model routes, views, etc) is
loaded exactly once in a way that’s reusable and extensible.



	We then run the WSGI app using the default web server. Since
app is a WSGI app you can also plug it into any other WSGI
server.





This example presents a compact way to organize your code, but for a
real project we recommend you read Organizing your Project.




Routing

Morepath uses a special routing technique that is different from many
other routing frameworks you may be familiar with. Morepath does not
route to views, but routes to models instead.


Why route to models?

Why does Morepath route to models? It allows for some nice
features. The most concrete feature is automatic hyperlink
generation - we’ll go into more detail about this later.

A more abstract feature is that Morepath through model-driven
application allows for greater code reuse: this is the basis for
Morepath’s super-powers. We’ll show a few of these special things
you can do with Morepath later.

Finally Morepath’s model-oriented nature makes it a more natural fit
for REST [https://en.wikipedia.org/wiki/Representational_state_transfer] applications. This is useful when you need to create a web
service or the foundation to a rich client-side application.




Models

A model is any Python object that represents the content of your
application: say a document, or a user, an address, and so on. A model
may be a plain in-memory Python object or be backed by a database
using an ORM such as SQLAlchemy [http://www.sqlalchemy.org/], or some NoSQL database such as the
ZODB [http://www.zodb.org/en/latest/]. This is entirely up to you; Morepath does not put special
requirements on models.

Above we’ve exposed a Root model to the root route /, which is
rather boring. To make things more interesting, let’s imagine we have
an application to manage users. Here’s our User class:

class User(object):
     def __init__(self, username, fullname, email):
         self.username = username
         self.fullname = fullname
         self.email = email





We also create a simple users database:

users = {}
def add_user(user):
     users[user.username] = user

faassen = User('faassen', 'Martijn Faassen', 'faassen@startifact.com')
bob = User('bob', 'Bob Bobsled', 'bob@example.com')
add_user(faassen)
add_user(bob)








Publishing models


Custom variables function

The default behavior is for Morepath to retrieve the variables by
name using getattr from the model objects. This only works if
those variables exist on the model under that name. If not, you can
supply a custom variables function that given the model returns
a dictionary with all the variables in it. Here’s how:

@app.path(model=User, path='/users/{username}',
          variables=lambda model: dict(username=model.username))
def get_user(username):
    return users.get(username)





Of course this variables is not necessary as it has the same
behavior as the default, but you can do whatever you want in the
variables function in order to get the username.

Getting variables right is important for link generation.



We want our application to have URLs that look like this:

/users/faassen

/users/bob





Here’s the code to expose our users database to such a URL:

@app.path(model=User, path='/users/{username}')
def get_user(username):
    return users.get(username)





The get_user function gets a user model from the users database by
using the dictionary get method. If the user doesn’t exist, it
returns None. We could’ve fitted a SQLAlchemy query in here
instead.

Now let’s look at the decorator. The model argument has the class
of the model that we’re putting on the web. The path argument has
the URL path under which it should appear.

The path can have variables in it which are between curly braces
({ and }). These variables become arguments to the function
being decorated. Any arguments the function has that are not in the
path are interpreted as URL parameters.

What if the user doesn’t exist? We want the end-user to see a 404
error.  Morepath does this automatically for you when you return
None for a model, which is what get_user does when the model
cannot be found.

Now we’ve published the model to the web but we can’t view it yet.


converters

A common use case is for path variables to be a database id. These
are often integers only. If a non-integer is seen in the path we
know it doesn’t match. You can specify a path variable contains an
integer using the integer converter. For instance:

@app.path(model=Post, path='posts/{post_id}', converters=dict(post_id=int))
def get_post(post_id):
    return query_post(post_id)





You can do this more succinctly too by using a default parameter for
post_id that is an int, for instance:

@app.path(model=Post, path='posts/{post_id}')
def get_post(post_id=0):
    return query_post(post_id)







For more on this, see Paths and Linking.




Views

In order to actually see a web page for a user model, we need to
create a view for it:

@app.view(model=User)
def user_info(self, request):
    return "User's full name is: %s" % self.fullname





The view is a function decorated by morepath.AppBase.view() (or
related decorators such as morepath.AppBase.json() and
morepath.AppBase.html()) that gets two arguments: self,
which is the model that this view is working for, so in this case an
instance of User, and request which is the current
request. request is a morepath.request.Request object (a
subclass of webob.request.BaseRequest [http://docs.webob.org/en/latest/modules/webob.html#webob.request.BaseRequest]).

Now the URLs listed above such as /users/faassen will work.

What if we want to provide an alternative view for the user, such as
an edit view which allows us to edit it? We need to give it a
name:

@app.view(model=User, name='edit')
def edit_user(self, request):
    return "An editing UI goes here"





Now we have functionality on URLs like /users/faassen/edit and
/users/bob/edit.

For more on this, see Views.




Linking to models

Morepath is great at creating links to models: it can do it for you
automatically. Previously we’ve defined an instance of User called
bob. What now if we want to link to the default view of bob?
We simply do this:

request.link(bob)





which generates the path /users/bob for us.

What if we want to see Bob’s edit view? We do this:

request.link(bob, 'edit')





And we get /users/bob/edit.

Using morepath.Request.link`() everywhere for link generation is
easy. You only need models and remember which view names are
available, that’s it. If you ever have to change the path of your
model, you won’t need to adjust any linking code.

For more on this, see Paths and Linking.


Link generation compared

If you’re familiar with routing frameworks where links are generated
to views (such as Flask or Django) link generation is more
involved. You need to give each route a name, and then refer back to
this route name when you want to generate a link. You also need to
supply the variables that go into the route. With Morepath, you
don’t need a route name, and if the default way of getting variables
from a model is not correct, you only need to explain once how to
create the variables for a route, with the variables argument to
@app.path.

In addition, Morepath links are completely generic: you can pass in
anything linkable. This means that writing a generic view that uses
links becomes easier – there is no dependency on particular named
URL paths anymore.






JSON and HTML views

@app.view is rather bare-bones. You usually know more about what
you want to return than that. If you want to return JSON, you can use
the shortcut @app.json instead to declare your view:

@app.json(model=User, name='info')
def user_json_info(self, request):
    return {'username': self.username,
            'fullname': self.fullname,
            'email': self.email}





This automatically serializes what is returned from the function JSON,
and sets the content-type header to application/json.

If we want to return HTML, we can use @app.html:

@app.html(model=User)
def user_info(self, request):
    return "<p>User's full name is: %s</p>" % self.fullname





This automatically sets the content type to text/html. It doesn’t
do any HTML escaping though, so the use of % above is unsafe! We
recommend the use of a HTML template language in that case.






Request object

The first argument for a view function is the request object. We’ll
give a quick overview of what’s possible here, but consult the
WebOb API documentation for more information.


	request.GET contains any URL parameters (?key=value). See
webob.request.BaseRequest.GET [http://docs.webob.org/en/latest/modules/webob.html#webob.request.BaseRequest.GET].

	request.POST contains any HTTP form data that was submitted. See
webob.request.BaseRequest.POST [http://docs.webob.org/en/latest/modules/webob.html#webob.request.BaseRequest.POST].

	request.method gets the HTTP method (GET, POST, etc). See
webob.request.BaseRequest.method [http://docs.webob.org/en/latest/modules/webob.html#webob.request.BaseRequest.method].

	request.cookies contains the cookies. See
webob.request.BaseRequest.cookies [http://docs.webob.org/en/latest/modules/webob.html#webob.request.BaseRequest.cookies]. response.set_cookie can be
used to set cookies. See webob.response.Response.set_cookie() [http://docs.webob.org/en/latest/modules/webob.html#webob.response.Response.set_cookie].






Redirects

To redirect to another URL, use morepath.redirect(). For example:

@app.view(model=User, name='extra')
def redirecting(self, request):
    return morepath.redirect(request.link(self, 'other'))








HTTP Errors

To trigger an HTTP error response you can raise various WebOb HTTP
exceptions (webob.exc). For instance:

from webob.exc import HTTPNotAcceptable

@app.view(model=User, name='extra')
def erroring(self, request):
    raise HTTPNotAcceptable()











          

      

      

    


    
         Copyright 2013-2014, Morepath developers.
      Created using Sphinx 1.2.2.
    

  

    
      Navigation

      
        	
          index

        	
          modules |

        	
          next |

        	
          previous |

        	Morepath 0.3 documentation 
 
      

    


    
      
          
            
  
Installation


Quick and Dirty Installation

To get started with Morepath right away, first create a Python 2.7
virtualenv [http://www.virtualenv.org/]:

$ virtualenv morepath_env
$ source morepath_env/bin/activate





Now install Morepath into it:

$ pip install morepath





You can now use the virtual env’s Python to run any code that uses
Morepath:

$ python quickstart.py





See Quickstart for information on how to get started with
Morepath itself, including an example of quickstart.py.




Creating a Morepath Project

When you develop a web application it’s a good idae to use standard
Python project organization practices. Organizing your Project
describes some recommendations on how to do this with
Morepath. Relevant in particular is the contents of setup.py,
which depends on Morepath and also sets up an entry point to start the
web server.

Once you have a project you can use tools like pip [http://www.pip-installer.org/] or
buildout [http://www.buildout.org/]. We’ll briefly describe how to use both.


pip

With pip and a virtualenv called morepath_env, you can do this in
your project’s root directory:

$ pip install --editable .





You can now run the application like this (if you called the console
script myproject-start):

$ myproject-start








buildout

Buildout is more involved than pip, but can also do a lot more for you
automatically and repeatedly.

Create a buildout.cfg file containing this:

[buildout]
develop = .
parts = scripts devpython
versions = versions

[versions]
venusian = 1.0a8
morepath = 0.1
reg = 0.6

[scripts]
recipe = zc.recipe.egg:scripts
eggs = myproject
       pytest

[devpython]
recipe = zc.recipe.egg
interpreter = devpython
eggs = myproject
       flake8





This describes how to install our project for development. Change
myproject to the name your project has in setup.py.

Place a buildout bootstrap.py [http://downloads.buildout.org/2/bootstrap.py] in your project’s root directory.

The first time you create or check out a project you need to bootstrap
the buildout. You can do this using the bootstrap.py script. Do
this from a virtualenv:

$ /path/to/morepath_env/bin/python bootstrap.py





You only need to do this once. After that you can run:

$ bin/buildout





each time you want to redo the installation after you change the
buildout config. It’s safe to run this when nothing has really changed
too.

Once you’ve run buildout, you can start your application. If it’s
named myproject-start in the entry point in setup.py, you can
run it like this:

$ bin/myproject-start






bin directory

Everything in bin will run in the virtualenv you’ve used to
bootstrap your project automatically (or in a subset thereof).






What’s going on with buildout?

What’s going on? What else did that buildout.cfg do for us?

The develop line tells which directories to look in for Python
projects (with a setup.py).  In this case only the local project
directory . is one. But if you also have the checkout of another
project that you depend on (maybe a development version of Morepath
itself), you can add that directory to the develop section.


mr.developer

If you are going to develop such a multi-project codebase you should
consider the buildout extension mr.developer [https://pypi.python.org/pypi/mr.developer] which can help you
automate this.



parts tells buildout what to configure; they are described in
the [scripts] and [devpython] sections later.

The line versions=versions tells buildout to lock down version
numbers according to the [versions]
section.


show-picked-versions

You can add a line show-picked-versions = true to the
[buildout] section. When you now run bin/buildout this dumps
all versions of libraries you use directly or indirectly that you
haven’t locked down to an explicit version to the console. You can
then lock them down in the [versions] section.

Locking down versions is useful if you want to make sure everybody
has the same versions of the libraries in development.



The [scripts] section installs your web application as a script in
the bin subdirectory of your project, according to the
console_scripts entry point in your project’s setup.py. If
it’s called myproject-start, then you can start it like this:

bin/myproject-start





This will start a HTTP server for your project.

The buildout also has installed pytest [http://pytest.org/] so you can run your
project’s tests automatically:

bin/py.test myproject





(if your Python package is in myproject)


Test dependencies

If you want to add some extra dependencies just for testing, you can
do this in your project’s setup.py by adding:

extras_require = dict(
  test=['pytest >= 2.5',
        'pytest-cov'],
),





This makes sure we have a pytest version 2.5 or later, and we
install the pytest-cov code coverage extension.

You can then modify the [scripts] section in buildout.cfg to
use the extra test requirements:

[scripts]
recipe = zc.recipe.egg:scripts
eggs = myproject [test]
       pytest







Now as to some optional extras. The [devpython] section installs a
Python interpreter which can import exactly what your project can
import. It assumes your project is called myproject in its
setup.py; change the name to match your project. You can start it
using:

$ bin/devpython





You’ll get the usual Python console >>>. This is useful for
testing your project’s imports and API manually.

It also installs the flake8 [https://pypi.python.org/pypi/flake8] tool which runs pep 8 checks and pyflakes
automatically. You can run it against your project by writing:

$ bin/flake8 myproject





where myproject is your project’s source code directory.






Depending on Morepath development versions

If you like being on the cutting edge and want to depend on the latest
Morepath and Reg development versions always, we recommend you use
buildout with the mr.developer extension for your project. You can see
how in this buildout.cfg [https://github.com/morepath/morepath_hello/blob/master/buildout.cfg].

You can also install these using pip (in a virtualenv). Here’s how:

$ pip install git+git://github.com/morepath/reg.git@master

$ pip install git+git://github.com/morepath/morepath.git@master











          

      

      

    


    
         Copyright 2013-2014, Morepath developers.
      Created using Sphinx 1.2.2.
    

  

    
      Navigation

      
        	
          index

        	
          modules |

        	
          next |

        	
          previous |

        	Morepath 0.3 documentation 
 
      

    


    
      
          
            
  
Superpowers

We said Morepath has super powers. Are they hard to use, then? No:
they’re both powerful and also easy to use, which makes them even
more super!


Link with Ease

Since Morepath knows about your models, it can generate links to them. If
you have a model instance (for example through a database query), you
can get a link to it by calling morepath.Request.link():

request.link(my_model)





Want a link to its edit view (or whatever named view you want)? Just
do:

request.link(my_model, 'edit')





If you create links this way everywhere (and why shouldn’t you?), you
know your application’s links will never break.

For much more, see Paths and Linking.




Generic UI

Morepath knows about model inheritance. It lets you define views for a
base class that automatically become available for all
subclasses. This is a powerful mechanism to let you write generic UIs.

For example, if we have this generic base class:

class ContainerBase(object):
    def entries(self):
       """All entries in the container returned as a list."""





We can easily define a generic default view that works for all
subclasses:

@app.view(model=ContainerBase)
def overview(self, request):
    return ', '.join([entry.title for entry in self.entries()])





But what if you want to do something different for a particular
subclass? What if MySpecialContainer needs it own custom default
view? Easy:

@app.view(model=MySpecialContainer)
def special_overview(self, request):
    return "A special overview!"





Morepath leverages the power of the flexible Reg [http://reg.readthedocs.org] generic function
library to accomplish this.

For much more, see Views.




Model-driven Permissions

Morepath features a very flexible but easy to use permission system.
Let’s say we have an Edit permission; it’s just a class:

class Edit(object):
    pass





And we have a view for some Document class that we only want to be
accessible if the user has an edit permission:

@app.view(model=Document, permission=Edit)
def edit_document(self, request):
    return "Editable"





How does Morepath know whether someone has Edit permission? We
need to tell it using the morepath.AppBase.permission()
directive. We can implement any rule we want, for instance this one:

@app.permission(model=Document, permission=Edit)
def have_edit_permission(model, identity):
    return model.has_permission(identity.userid)





Instead of a specific rule that only works for Document, we can
also give our app a broad rule (use model=object).




Composable Views

Let’s say you have a JSON view for a Document class:

@app.json(model=Document)
def document_json(self, request):
    return {'title': self.title}





And now we have a view for a container that contains documents. We want
to automatically render the JSON views of the documents in a list. We
can write this:

@app.json(model=DocumentContainer)
def document_container_json(self, request):
    return [document_json(request, doc) for doc in self.entries()]





Here we’ve used document_json ourselves. But what now if the
container does not only contain Document instances? What if one of
them is a SpecialDocument? Our document_container_json
function breaks. How to fix it? Easy, we can use
morepath.Request.view():

@app.json(model=DocumentContainer)
def document_container_json(self, request):
    return [request.view(doc) for doc in self.entries()]





Now document_container_json works for anything in the container
model that has a default view!




Extensible Applications

Somebody else has written an application with Morepath. It contains lots
of stuff that does exactly what you want, and one view that doesn’t
do what you want:

@app.view(model=Document)
def recalcitrant_view(self, request):
    return "The wrong thing!"





Ugh! We can’t just change the application as it needs to continue to
work in its original form. Besides, it’s being maintained by someone
else. What do we do now? Monkey-patch? Not at all: Morepath got you
covered. You simply create a new application that extends the original:

my_app = morepath.App(extends=app)





We now have an application that does exactly what app does. Now
to override that one view to do what we want:

@my_app.view(model=Document)
def whatwewant(self, request):
    return "The right thing!"





And we’re done!

It’s not just the view directive that works this way: all Morepath
directives work this way. Using the morepath.AppBase.function()
decorator you could even override the core functionality of Morepath
itself!

Morepath also lets you mount one application within another, allowing
composition-based reuse. See App Reuse for more
information. Using these techniques you can build large applications,
see Building Large Applications.







          

      

      

    


    
         Copyright 2013-2014, Morepath developers.
      Created using Sphinx 1.2.2.
    

  

    
      Navigation

      
        	
          index

        	
          modules |

        	
          next |

        	
          previous |

        	Morepath 0.3 documentation 
 
      

    


    
      
          
            
  
Paths and Linking


Introduction

Morepath lets you publish model classes on paths using Python
functions. It also lets you create links to model instances. To be
able do so Morepath needs to be told what variables there are in the
path in order to find the model, and how to find these variables again
in the model in order to construct a link to it.




Paths

Let’s assume we have a model class Overview:

class Overview(object):
    pass





Here’s how we could expose it to the web under the path overview:

@app.path(model=Overview, path='overview')
def get_overview():
    return Overview()





And let’s give it a default view so we can see it when we go to its
URL:

@app.view(model=Overview)
def overview_default(self, request):
    return "Overview"





No variables are involved yet: they aren’t in the path and the
get_overview function takes no arguments.

Let’s try a single variable now. We have a class Document:

class Document(object):
    def __init__(self, name):
        self.name = name





Let’s expose it to the web under documents/{name}:

@app.path(model=Document, path='documents/{name}')
def get_document(name):
    return query_document_by_name(name)

@app.view(model=Document)
def document_default(self, request):
    return "Document: " + self.name





Here we declare a variable in the path ({name}), and it gets
passed into the get_document function. The function does some kind
of query to look for a Document instance by name. We then have a
view that knows how to display a Document instance.

We can also have multiple variables in a path. We have a
VersionedDocument:

class VersionedDocument(object):
    def __init__(self, name, version):
        self.name = name
        self.version = version





We could expose this to the web like this:

@app.path(model=VersionedDocument,
          path='versioned_documents/{name}-{version}')
def get_versioned_document(name, version):
    return query_versioned_document(name, version)

@app.view(model=VersionedDocument)
def versioned_document_default(self, request):
    return "Versioned document: %s %s" % (self.name, self.version)





The rule is that all variables declared in the path can be used as
arguments in the model function.




URL parameters

What if we want to use URL parameters to expose models? That is
possible too. Let’s look at the Document case first:

@app.path(model=Document, path='documents')
def get_document(name):
    return query_document_by_name(name)





get_document has an argument name, but it doesn’t appear in
the path. This argument is now taken to be a URL parameter. So, this
exposes URLs of the type documents?name=foo. That’s not as nice as
documents/foo, so we recommend against parameters in this case:
you should use paths to identify something.

URL parameters are more useful for queries. Let’s imagine we have a
collection of documents and we have an API on it that allows us to
search in it for some text:

class DocumentCollection(object):
    def __init__(self, text):
        self.text = text

    def search(self):
        if self.text is None:
            return []
        return fulltext_search(self.text)





We now publish this collection, making it searchable:

@app.path(model=DocumentCollection, path='search')
def document_search(text):
    return DocumentCollection(text)





To be able to see something, we add a view that returns a comma
separated string with the names of all matching documents:

@app.view(model=DocumentCollection)
def document_collection_default(self, request):
    return ', '.join([document.name for document in self.search()])





As you can see it uses the DocumentCollection.search method.

Unlike path variables, URL parameters can be omitted, i.e. we can have
a plain search path without a text parameter. In that case
text has the value None. The search method has code to
handle this special case: it returns the empty list.

Often it’s useful to have a default instead. Let’s imagine we have a
default search query, all that should be used if no text
parameter is supplied (instead of None). We make a default
available by supplying a default value in the document_search
function:

@app.path(model=DocumentCollection, path='search')
def document_search(text='all'):
    return DocumentCollection(text)





Note that defaults have no meaning for path variables, because
whenever a path is resolved, all variables in it have been found. They
can be used as type hints however; we’ll talk more about those soon.

Like with path variables, you can have as many URL parameters as you
want.




Extra URL parameters

URL parameters are matched with function arguments, but it could be
you’re interested in an arbitrary amount of extra URL parameters. You
can specify that you’re interested in this by adding an
extra_parameters argument:

@app.path(model=DocumentCollection, path='search')
def document_search(text='all', extra_parameters):
    return DocumentCollection(text, extra_parameters)





Now any additional URL parameters are put into the
extra_parameters dictionary. So, search?text=blah&a=A&bB would
match text with the text parameter, and there would be an
extra_parameters containing {'a': 'A', 'b': 'B'}.




Linking

To create a link to a model, we can call morepath.Request.link()
in our view code. At that point the model is examined to retrieve the
variables so that the path can be constructed.

Here is a simple case involving Document again:

class Document(object):
    def __init__(self, name):
        self.name = name

@app.path(model=Document, path='documents/{name}')
def get_document(name):
    return query_document_by_name(name)





We add a named view called link that links to the document itself:

@app.view(model=Document, name='link')
def document_self_link(self, request):
    return request.link(self)





The view at /documents/foo/link produces the link
/documents/foo. That’s the right one!

So, it constructs a link to the document itself. This view is not very
useful, but the principle is the same everywhere in any view: as long
as we have a Document instance we can create a link to it using
request.link().

You can also give link a name to link to a named view. Here’s a
link2 view creates a  link to the link view:

@app.view(model=Document, name='link2')
def document_self_link(self, request):
    return request.link(self, name='link')





So the view documents/foo/link2 produces the link
documents/foo/link.




Linking with path variables

How does the request.link code know what the value of the
{name} variable should be so that the link can be constructed?  In
this case this happened automatically: the value of the name
attribute of Document is assumed to be the one that goes into the
link.

This automatic rule won’t work everywhere, however. Perhaps an
attribute with a different name is used, or a more complicated method
is used to construct the name. For those cases we can take over and
supply a custom variables function that knows how to construct the
variables needed to construct the link from the model.

The variables function gets the model as a single argument and needs
to return a dictionary. The keys should be the variable names used in
the path or URL parameters, and the values should be the values as
extracted from the model.

As an example, here is the variables function for the Document
case made explicit:

@app.path(model=Document, path='documents/{name}',
          variables=lambda model: dict(name=model.name))
def get_document(name):
    return query_document_by_name(name)





Or to spell it out without the use of lambda:

def document_variables(model):
    return dict(name=model.name)

@app.path(model=Document, path='documents/{name}',
          variables=document_variables)
def get_document(name):
    return query_document_by_name(name)





Let’s change Document so that the name is stored in the id
attribute:

class DifferentDocument(object):
    def __init__(self, name):
        self.id = name





Our automatic variables won’t cut it anymore, so we have to be explicit::
attribute, we can do this:

@app.path(model=DifferentDocument, path='documents/{name}',
          variables=lambda model: dict(name=model.id))
def get_document(name):
    return query_document_by_name(name)





All we’ve done is adjust the variables function to take
model.id.

Getting variables works for multiple variables too of course. Here’s
the explicit variables for the VersionedDocument case that
takes multiple variables:

@app.path(model=VersionedDocument,
          path='versioned_documents/{name}-{version}',
          variables=lambda model: dict(name=model.name,
                                       version=model.version))
def get_versioned_document(name, version):
    return query_versioned_document(name, version)





If you have extra_parameters, the default variables expects that
extra_parameters to exist as an attribute on the object, but you
can write a custom variables that retrieves this dictionary from
the object in some other way:

@app.path(model=SearchResults,
          path='search',
          variables=lambda model: dict(text=model.search_text,
                                       extra_parameters=model.get_extra()))
def get_search_results(text, extra_parameters):
    ...








Linking with URL parameters

Linking works the same way for URL parameters as it works for path
variables.

Here’s a get_model that takes the document name as a URL
parameter, using an implicit variables:

@app.path(model=Document, path='documents')
def get_document(name):
    return query_document_by_name(name)





Now we add back the same self_link view as we had before:

@app.view(model=Document, name='link')
def document_self_link(self, request):
    return request.link(self)





Here’s get_document with an explicit variables:

@app.path(model=Document, path='documents',
          variables=lambda model: dict(name=model.name))
def get_document(name):
    return query_document_by_name(name)





i.e. exactly the same as for the path variable case.

Let’s look at a document exposed on this URL:

/documents?name=foo





Then the view documents/link?name=foo constructs the link:

/documents?name=foo





The documents/link?name=foo is interesting: the name=foo
parameters are added to the end, but they are used by the
get_document function, not by its views. Here’s link2 again
to further demonstrate this behavior:

@app.view(model=Document, name='link2')
def document_self_link(self, request):
    return request.link(self, name='link')





When we now go to documents/link2?name=foo we get the link
documents/link?name=foo.




Type hints

So far we’ve only dealt with variables that have string values. But
what if we want to use other types for our variables, such as int
or datetime? What if we have a record that you obtain by an
int id, for instance? Given some Record class that
has an int id like this:

class Record(object):
    def __init__(self, id):
        self.id = id





We could do this to expose it:

@app.path(model=Record, path='records/{id}')
def get_record(id):
    try:
        id = int(id)
    except ValueError:
        return None
    return record_by_id(id)





But Morepath offers a better way. We can tell Morepath we expect an
int and only an int, and if something else is supplied, the path
should not match. Here’s how:

@app.path(model=Record, path='records/{id}')
def get_record(id=0):
    return record_by_id(id)





We’ve added a default parameter (id=0) here that Morepath uses as
an indication that only an int is expected. Morepath will now
automatically convert id to an int before it enters the
function. It also gives a 404 Not Found response for URLs that
don’t have an int. So it accepts /records/100 but gives a 404 for
/records/foo.

Let’s examine the same case for an id URL parameter:

@app.path(model=Record, path='records')
def get_record(id=0):
    return record_by_id(id)





This responds to an URL like /records?id=100, but rejects
/records/id=foo as foo cannot be converted to an int. It
rejects a request with the latter path with a 400 Bad Request
error.

By supplying a default for a URL parameter we’ve accomplished two in
one here, as it’s a good idea to supply defaults for URL parameters
anyway, as that makes them properly optional.




Conversion

Sometimes simple type hints are not enough. What if multiple possible
string representations for something exist in the same application?
Let’s examine the case of datetime.date.

We could represent it as a string in ISO 8601 format as returned by
the datetime.date.isoformat() method, i.e. 2014-01-15 for
the 15th of january 2014. We could also use ISO 8601 compact format,
namely 20140115 (and this what Morepath defaults to). But we could
also use another representation, say 15/01/2014.

Let’s first see how a string with an ISO compact date can be decoded
(deserialized, loaded) into a date object:

from datetime import date
from time import mktime, strptime

def date_decode(s):
    return date.fromtimestamp(mktime(strptime(s, '%Y%m%d')))





We can try it out:

>>> date_decode('20140115')
datetime.date(2014, 1, 15)





Note that this function raises a ValueError if we give it a string
that cannot be converted into a date:

>>> date_decode('blah')
Traceback (most recent call last):
   ...
ValueError: time data 'blah' does not match format '%Y-%m-%d'





This is a general principle of decode: a decode function can fail and
if it does it should raise a ValueError.

We also specify how to encode (serialize, dump) a date object back
into a string:

def date_encode(d):
    return d.strftime('%Y%m%d')





We can try it out too:

>>> date_encode(date(2014, 1, 15))
'20140115'





A encode function should never fail, if at least presented with input
of the right type, in this case a date instance.


Inverse

To help you write these functions, note that they’re the inverse each
other, so these equality are both True. For any string s that can
be decoded, this is true:

encode(decode(s)) == s





And for any object that can be encoded, this is true:

decode(encode(o)) == o





The output of decode should always be input for encode, and the
output of encode should always be input for decode.



Now that we have our date_decode and date_encode functions, we can
wrap them in an morepath.Converter object:

date_converter = morepath.Converter(decode=date_decode, encode=date_encode)





Let’s now see how we can use date_converter.

We have some kind of Records collection that can be parameterized
with start and end to select records in a date range:

class Records(object):
   def __init__(self, start, end):
      self.start = start
      self.end = end

   def query(self):
      return query_records_in_date_range(self.start, self.end)





We expose it to the web:

@app.path(model=Records, path='records',
          converters=dict(start=date_converter, end=date_converter))
def get_records(start, end):
    return Records(start, end)





We also add a simple view that gives us comma-separated list of
matching record ids:

@app.view(model=Records):
def records_view(self, request):
    return ', '.join([str(record.id) for record in self.query()])





We can now go to URLs like this:

/records?start=20110110&end=20110215





The start and end URL parameters now be decoded into date
objects, which get passed into get_records. And when you generate
a link to a Records object, the start and end dates are
encoded into strings.

What happens when a decode raises a ValueError, i.e. improper
dates were passed in? In that case, the URL parameters cannot be
decoded properly, and Morepath returns a 400 Bad Request response.

You can also use encode and decode for arguments used in a path:

@app.path(model=Day, path='days/{d}', converters=dict(d=date_converter))
def get_day(d):
    return Day(d)





This publishes the model on a URL like this:

/days/20110101





When you pass in a broken date, like /days/foo, a ValueError is
raised by the date decoder, and a 404 not Found response is given
by the server: the URL does not resolve to a model.




Default converters

Morepath has a number of default converters registered; we already saw
examples for int and strings. Morepath also has a default converter
for date (compact ISO 8601, i.e. 20131231) and datetime
(i.e. 20131231T23:59:59).

You can add new default converters for your own classes, or override
existing default behavior, by using the
morepath.AppBase.converter() decorator. Let’s change the default
behavior for date in this example to use ISO 8601 extended format,
so that dashes are there to separate the year, month and day,
i.e. 2013-12-31:

def extended_date_decode(s):
    return date.fromtimestamp(mktime(strptime(s, '%Y-%m-%d')))

def extended_date_encode(d):
    return d.strftime('%Y-%m-%d')

@app.converter(type=date)
def date_converter():
    return Converter(extended_date_decode, extended_date_encode)





Now Morepath understand type hints for date differently:

@app.path(model=Day, path='days/{d}')
def get_day(d=date(2011, 1, 1)):
    return Day(d)





has models published on a URL like:

days/2013-12-31








Type hints and converters

You may have a situation where you don’t want to add a default
argument to indicate the type hint, but you know you want to use a
default converter for a particular type. For those cases you
can pass the type into the converters dictionary as a shortcut:

@app.path(model=Day, path='days/{d}', converters=dict(d=date))
def get_day(d):
    return Day(d)





The variable d is now interpreted as a date. Morepath uses
whatever converter that was registered for that type.




List converters

What if you want to allow a list of parameters instead of just a single
one? You can do this by wrapping the converter or type in the converters
dictionary in a list:

@app.path(model=Days, path='days', converters=dict(d=[date]))
def get_days(d):
    return Days(d)





Now the d parameter will be interpreted as a list. This means URLs
like this are accepted:

/days?d=2014-01-01

/days?d=2014-01-01&d=2014-01-02

/days





For the first case, d is a list with one date item, in the second
case, d has 2 items, and in the third case the list d is
empty.




get_converters

Sometimes you only know what converters are available at run-time;
this particularly relevant if you want to supply converters for the
values in extra_parameters. You can supply the converters using
the special get_converters parameter to @app.path:

def get_converters():
    return { 'something': int }

@app.path(path='search', model=SearchResults,
          get_converters=my_get_converters)
...





Now if there is a parameter (or extra parameter) called something, it
is converted to an int.

You can combine converters and get_converters. If you use
both, get_converters will override any converters also defined in
the static converters.




Required

Sometimes you may want a URL parameter to be required: when the URL
parameter is missing, it’s an error and a 400 Bad Request should
be returned. You can do this by passing in a required argument
to the model decorator:

@app.path(model=Record, path='records', required=['id'])
def get_record(id):
    return query_record(id)





Normally when the id URL parameter is missing, the None value
is passed into get_record (if there is no default). But since we
made id required, 400 Bad Request will be issued if id is
missing now. required only has meaning for URL parameters; path
variables are always present if the path matches at all.




Absorbing

In some special cases you may want a path to match all sub-paths,
absorbing them. This can be useful if you are writing a server backend
to a client side application that does routing on the client using the
HTML 5 history API – the server needs to handle catch all subpaths in
that case and send them back to the client, where they can be handled
by the client-side router.

You can do this using the special absorb argument to the path
decorator, like this:

class Model(object):
    def __init__(self, absorb):
        self.absorb = absorb

@app.path(model=Model, path='start', absorb=True)
def get_foo(absorb):
    return Model(absorb)





As you can see, if you use absorb then a special absorb
argument is passed into the model factory function.

Now the start path matches all of its sub-paths. So for this
path:

/start/foo/bar/baz





model.absorb is foo/bar/baz.

It also matches if there is no sub-path:

/start





model.absorb is the empty string ''.

Note that you cannot use view names with a path that absorbs; only a
default view with the empty name. View names are absorbed along with
the rest of the path.

Note also that you cannot define an explicit path under an absorbed
path – this is ignored. This means that the following additional code
has no effect:

@app.path(model=Foo, path='start/extra')





You can still generate a link to a model that is under an
absorbed path – it uses the value of the absorb variable.







          

      

      

    


    
         Copyright 2013-2014, Morepath developers.
      Created using Sphinx 1.2.2.
    

  

    
      Navigation

      
        	
          index

        	
          modules |

        	
          next |

        	
          previous |

        	Morepath 0.3 documentation 
 
      

    


    
      
          
            
  
Views


Introduction

Morepath views are looked up through the URL path, but not through the
routing procedure. Routing stops at models. Then the last segment of
the path is taken to identify the view by name.




Named views

Let’s examine a path:

/documents/1/edit





If there’s a model like this:

@app.path(model=Document, path='/documents/{id}')
def get_document(id):
    return query_for_document(id)





then /edit identifies a view named edit on the Document model (or
on one of its base classes). Here’s how we define it:

@app.view(model=Document, name='edit')
def document_edit(self, request):
    return "edit view on model: %s" % self.id








Default views

Let’s examine this path:

/documents/1





If the model is published on the path /documents/{id}, then this is
a path to the default view of the model. Here’s how that view is
defined:

@app.view(model=Document)
def document_default(self, request):
    return "default view on model: %s" % self.id





The default view is the view that gets triggered if there is no
special path segment in the URL that indicates a specific view. The
default view has as its name the empty string "", so this
registration is the equivalent of the one above:

@app.view(model=Document, name="")
def document_default(self, request):
    return "default view on model: %s" % self.id








Generic views

Generic views in Morepath are nothing special: the thing that makes
them generic is that their model is a base class, and inheritance does
the rest. Let’s see how that works.

What if we want to have a view that works for any model that
implements a certain API? Let’s imagine we have a Collection model:

class Collection(object):
   def __init__(self, offset, limit):
       self.offset = offset
       self.limit = limit

   def query(self):
       raise NotImplementedError





A Collection represents a collection of objects, which can be
ordered somehow. We restrict the objects we actually get by offset and
limit. With offset 100 and limit 10, we get objects 100 through 109.

Collection is a base class, so we don’t actually implement how to
do a query. That’s up to the subclasses. We do specify that query is
supposed to return objects that have an id attribute.

We can create a view to this abstract collection that displays the
ids of the things in it in a comma separated list:

@app.view(model=Collection)
def collection_default(self, request):
    return ", ".join([str(item.id) for item in self.query()])





This view is generic: it works for any kind of collection.

We can now create a concrete collection that fulfills the requirements:

class Item(object):
   def __init__(self, id):
       self.id = id

class MyCollection(Collection):
   def query(self):
       return [Item(str(i)) for i in
               range(self.offset, self.offset + self.limit)





When we now publish the concrete MyCollection on some URL:

@app.path(model=MyCollection, path='my_collection')
def get_my_collection():
    return MyCollection()





it automatically gains a default view for it that represents the ids
in it as a comma separated list. So the view collection_default is
generic.




Details

The decorator morepath.AppBase.view() (@app.view) takes two
arguments here, model, which is the class of the model the view is
representing, and name, which is the name of the view in the URL
path.

The @app.view decorator decorates a function that takes two arguments:
a self and a request.

The self object is the model that’s being viewed, i.e. the one
found by the get_document function. It is going to be an instance
of the class given by the model parameter.

The request object is an instance of morepath.Request,
which in turn is a special kind of
webob.request.BaseRequest [http://docs.webob.org/en/latest/modules/webob.html#webob.request.BaseRequest]. You can get request information
from it like arguments or form data, and it also exposes a few special
methods, such as morepath.Request.link().

The @app.path and @app.view decorators are associated by
indirectly their model parameters: the view works for a given
model path if the model parameter is the same, or if the view is
associated with a base class of the model exposed by the
@app.path decorator.




Ambiguity between path and view

Let’s examine these simple paths in an application:

/folder
/folder/{name}





/folder shows an overview of the items in it. /folder/{name}
is a way to get to an individual item.

This means:

/folder/some_item





is a path if there is an item in the folder with the name
some_item.

Now what if we also want to have a path that allows you to edit the
folder? It’d be natural to spell it like this:

/folder/edit





i.e. there is a path /folder with a view edit.

But now we have a problem: how does Morepath know that edit is a
view and not a named item in the folder? The answer is that it
doesn’t. You cannot reach the view this way.

Instead we have to make it explicit in the path that we want a view with
a + character:

/folder/+edit





Now Morepath won’t try to interpret +edit as a named item in the
folder, but instead looks up the view.

Any view can be addressed not just by name but also by its name with a
+ prefix. To generate a link to a name with a + prefix you can
use the prefix as well, so you can write:

request.link(my_folder, '+edit')








render

By default @app.view returns either a morepath.Response
object or a string that gets turned into a response. The
content-type of the response is not set. For a HTML response you
want a view that sets the content-type to text/html. You can
do this by passing a render parameter to the @app.view decorator:

@app.view(class=Document, render=morepath.render_html)
def document_default(self, request):
    return "<p>Some html</p>"





morepath.render_html() is a very simple function:

def render_html(content):
    response = morepath.Response(content)
    response.content_type = 'text/html'
    return response





You can define your own render functions; they just need to take
some content (any object, in this case its a string), and return a
Response object.

Another render function is morepath.render_json(). Here it is:

import json

def render_json(content):
    response = morepath.Response(json.dumps(content))
    response.content_type = 'application/json'
    return response





We’d use it like this:

@app.view(class=Document, render=morepath.render_json)
def document_default(self, request):
    return {'my': 'json'}





HTML views and JSON views are so common we have special shortcut decorators:


	@app.html (morepath.AppBase.html())

	@app.json (morepath.AppBase.json())



Here’s how you use them:

@app.html(class=Document)
def document_default(self, request):
    return "<p>Some html</p>"

@app.json(class=Document)
def document_default(self, request):
    return {'my': 'json'}








Permissions

We can protect a view using a permission. A permission is any
Python class:

class Edit(object):
    pass





The class doesn’t do anything; it’s just a marker for permission.

You can use such a class with a view:

@app.view(model=Document, name='edit', permission=Edit)
def document_edit(self, request):
    return 'edit document'





You can define which users have what permission on which models by using
the morepath.AppBase.permission() decorator. To learn more,
read Security.




Manipulating the response

Sometimes you want to do things to the response specific to the view,
so that you cannot do it in a render function. Let’s say you want
to add a cookie using webob.Response.set_cookie(). You don’t
have access to the response object in the view, as it has not been
created yet. It is only created after the view has returned. We can
register a callback function to be called after the view is done and
the response is ready using the morepath.Request.after()
decorator. Here’s how:

@app.view(model=Document)
def document_default(self, request):
    @request.after
    def manipulate_response(response):
        response.set_cookie('my_cookie', 'cookie_data')
    return "document default"








request_method

By default, a view only answers to a GET request: it doesn’t
handle other request methods like POST or PUT or DELETE. To
write a view that handles another request method you need to be explicit and
pass in the request_method parameter:

@app.view(model=Document, name='edit', request_method='POST')
def document_edit(self, request):
    return "edit view on model: %s" % self.id





Now we have a view that handles POST. Normally you cannot have
multiple views for the same document with the same name: the Morepath
configuration engine rejects that. But you can if you make sure they
each have a different request method:

@app.view(model=Document, name='edit', request_method='GET')
def document_edit_get(self, request):
    return "get edit view on model: %s" % self.id

@app.view(model=Document, name='edit', request_method='POST')
def document_edit_post(self, request):
    return "post edit view on model: %s" % self.id








Predicates

The name and request_method arguments on the @app.view
decorator are examples of view predicates. You can add new ones by
using the morepath.AppBase.predicate() decorator.

Let’s say we have a view that we only want to kick in when a certain
request header is set to something:

@app.predicate(name='something', order=100, default=None)
def get_something_header(self, request):
    return request.headers.get('Something')





We can use any information in the request and model to construct the
predicate. Now you can use it to make a view that only kicks in when
the Something` header is special:

@app.view(model=Document, something='special')
def document_default(self, request):
    return "Only if request header Something is set to special."





If you have a predicate and you don’t use it in a @app.view, or
set it to None, the view works for the default value for that
predicate. If you don’t care what the predicate is and want the view
to match for any value, you can pass in the special sentinel
morepath.ANY. The default parameter is also used when
rendering a view using morepath.Request.view() and you don’t
pass in a particular value for that predicate.

The order parameter for the predicate determines which predicates
match more strongly than another; lower order matches more
strongly. If there are two view candidates that both match the
predicates for a request and model, the strongest match is picked.




request.view

It is often useful to be able to compose a view from other
views. Let’s look at our earlier Collection example again. What if
we wanted a generic view for our collection that included the views
for its content? This is easiest demonstrated using a JSON view:

@app.json(model=Collection)
def collection_default(self, request):
    return [request.view(item) for item in self.query()]





Here we have a view that for all items returned by query includes its
view in the resulting list. Since this view is generic, we cannot
refer to a specific view function here; we just want to use the
view function appropriate to whatever item may be. For this
we can use morepath.Request.view().

We could for instance have a particular item with a view like this:

@app.json(model=ParticularItem)
def particular_item_default(self, request):
    return {'id': self.id}





And then the result of collection_default is something like:

[{'id': 1}, {'id': 2}]





but if we have a some other item with a view like this:

@app.json(model=SomeOtherItem)
def some_other_item_default(self, request):
    return self.name





where the name is some string like alpha or beta, then the
output of collection_default is something like:

['alpha', 'beta']





So request.view can make it much easier to construct composed JSON
results where JSON representations are only loosely coupled.

You can also use predicates in request.view. Here we get the
view with the name "edit" and the request_method "POST":

request.view(item, name="edit", request_method="POST")





You can also create views that are for internal use only. You can use
them with request.view() but they won’t show up to the web; going
to such a view is a 404 error. You can do this by passing the internal
flag to the directive:

@app.json(model=SomeOtherItem, name='extra', internal=True)
def some_other_item_extra(self, request):
    return self.name





The extra view can be used with request.view(item,
name='extra'), but it is not available on the web – there is no
/extra view.




Exception views

Sometimes your application raises an exception. This can either be a
HTTP exception, for instance when the user goes to a URL that does not
exist, or an arbitrary exception raised by the application.

HTTP exceptions are by default rendered in the standard WebOb way,
which includes some text to describe Not Found, etc. Other exceptions
are normally caught by the web server and result in a HTTP 500 error
(internal server error).

You may instead want to customize what these exceptions look like. You
can do so by declaring a view using the exception class as the
model. Here’s how you make a custom 404 Not Found:

from webob.exc import HTTPNotFound

@app.view(model=HTTPNotFound)
def notfound_custom(self, request):
    def set_status_code(response):
        response.status_code = self.code # pass along 404
    request.after(set_status_code)
    return "My custom not found!"





We have to add the set_status_code to make sure the response is
still a 404; otherwise we change the 404 to a 200 Ok! This shows that
self is indeed an instance of HTTPNotFound and we can access
its code attribute.

Your application may also define its own custom exceptions that have
a meaning particular to the application. You can create custom views for
those as well:

class MyException(Exception):
    pass

@app.view(model=MyException)
def myexception_default(self, request):
     return "My exception"





Without an exception view for MyException any view code that raises
MyException would bubble all the way up to the WSGI server and
a 500 Internal Server Error is generated.

But with the view for MyException in place, whenever
MyException is raised you get the special view instead.







          

      

      

    


    
         Copyright 2013-2014, Morepath developers.
      Created using Sphinx 1.2.2.
    

  

    
      Navigation

      
        	
          index

        	
          modules |

        	
          next |

        	
          previous |

        	Morepath 0.3 documentation 
 
      

    


    
      
          
            
  
Security


Introduction

The security infrastructure in Morepath helps you make sure that web
resources published by your application are only accessible by those
persons that are allowed to do so. If a person is not allowed access,
they will get an appropriate HTTP error: HTTP Forbidden 403.




Identity

Before we can determine who is allowed to do what, we need to be able
to identify who people are in the first place.

The identity policy in Morepath takes a HTTP request and establishes a
claimed identity for it. For basic authentication for instance it will
extract the username and password. The claimed identity can be
accessed by looking at the morepath.Request.identity attribute
on the request object.

This is how you install an identity policy into a Morepath app:

from morepath.security import BasicAuthIdentityPolicy

@app.identity_policy()
def get_identity_policy():
    return BasicAuthIdentityPolicy()








Verify identity

The identity policy only establishes who someone is claimed to
be. It doesn’t verify whether that person is actually who they say
they are. For identity policies where the browser repeatedly sends the
username/password combination to the server, such as with basic
authentication and cookie-based authentication, we need to check each
time whether the claimed identity is actually a real identity.

By default, Morepath will reject any claimed identities. To let your
application verify identities, you need to use
morepath.AppBase.verify_identity():

@app.verify_identity()
def verify_identity(identity):
    return user_has_password(identity.username, identity.password)





The identity object received here is as established by the
identity policy. What the attributes of the identity object are
(besides username) is also determined by the specific identity
policy you install.

Note that user_has_password stands in for whatever method you use
to check a user’s password; it’s not part of Morepath.




Session or ticket identity verification

If you use an identity policy based on the session (which you’ve made
secure otherwise), or on a cryptographic ticket based authentication
system such as the one implemented by mod_auth_tkt [http://www.openfusion.com.au/labs/mod_auth_tkt/], the claimed identity
is actually enough.

We know that the claimed identity is actually the one given to the
user earlier when they logged in. No database-based identity check is
required to establish that this is a legitimate identity. You can
therefore implement verify_identity` like this:

@app.verify_identity()
def verify_identity(identity):
    # trust the identity established by the identity policy
    return True






a ticket based identity policy implementation?

There is no implementation yet of a ticket based identity policy in
Morepath. Will you implement one? You could port it from Pyramid.






Login and logout

So now we know how identity gets established, and how it can be
verified. We haven’t discussed yet how a user actually logs in to
establish an identity in the first place.

For this, we need two things:


	Some kind of login form. Could be taken care of by client-side code
or by a server-side view. We leave this as an exercise for the
reader.

	The view that the login data is submitted to when the user tries to
log in.



How this works in detail is up to your application. What’s common to
login systems is the action we take when the user logs in, and the
action we take when the user logs in. When the user logs in we need to
remember their identity on the response, and when the user logs in
we need to forget their identity again.

Here is a sketch of how logging in works. Imagine we’re in a Morepath
view where we’ve already retrieved username and password from
the request (coming from a login form):

# check whether user has password, using password hash and database
if not user_has_password(username, password):
    return "Sorry, login failed" # or something more fancy

# now that we've established the user, remember it on the response
@request.after
def remember(response):
    identity = morepath.Identity(username)
    morepath.remember_identity(response, identity)





This is enough for session-based or cryptographic ticket-based
authentication.

For cookie-based authentication where the password is sent as a cookie
to the server for each request, we need to make sure include the
password the user used to log in, so that remember can then place
it in the cookie so that it can be sent back to the server:

@request.after
def remember(response):
    identity = morepath.Identity(username, password=password)
    morepath.remember_identity(response, identity)





When you construct the identity using morepath.Identity, you
can any data you want in the identity object by using keyword
parameters.


Logging out

Logging out is easy to implement and will work for any kind of
authentication except for basic auth (see later). You simply call
morepath.forget_identity somewhere in the logout view:

@request.after
def forget(response):
    morepath.forget_identity(response)





This will cause the login information (in cookie-form) to be removed
from the response.




Basic authentication

Basic authentication is special in a number of ways:


	The HTTP response status that triggers basic auth is Unauthorized
(401), not the default Forbidden (403). This needs to be sent back
to the browser each time login fails, so that the browser asks the
user for a username and a password.

	The username and password combination is sent to the server by the
browser automatically; there is no need to set some type of cookie
on the response. Therefore remember_identity does nothing.

	With basic auth, there is no universal way for a web application to
trigger a log out. Therefore forget_identity does nothing
either.



To trigger a 401 status when time Morepath raises a 403 status,
we can use an exception view, something like this:

from webob.exc import HTTPForbidden

@app.view(model=HTTPForbidden)
def make_unauthorized(self, request):
    @request.after
    def set_status_code(response):
        response.status_code = 401
    return "Unauthorized"





The core of the login code can remain the same as remember_identity is
a no-op, but you could reduce it to this:

# check whether user has password, using password hash and database
if not user_has_password(username, password):
    return "Sorry, login failed" # or something more fancy










Permissions

Now that we have a way to establish identity and a way for the user to
log in, we can move on to permissions. Permissions are per view. You
can define rules for your application that determine when a user has a
permission.

Let’s say we want two permissions in our application, view and
edit. We define those as plain Python classes:

class ViewPermission(object):
    pass

class EditPermission(object):
    pass






Permission Hierarchy

Since permissions are classes they could inherit from each other and
form some kind of permission hierarchy, but we’ll keep things simple
here. Often a flat permission hierarchy is just fine.



Now we can protect views with those permissions. Let’s say we have a
Document model that we can view and edit:

@app.html(model=Document, permission=ViewPermission)
def document_view(request, model):
    return "<p>The title is: %s</p>" % model.title

@app.html(model=Document, name='edit', permission=EditPermission)
def document_edit(request, model):
    return "some kind of edit form"





This says:


	Only allow access to document_view if the identity has
ViewPermission on the Document model.

	Only allow allow access to document_edit if the identity has
EditPermission on the Document model.






Permission rules

Now that we give people a claimed identity and we have guarded our
views with permissions, we need to establish who has what permissions
where using some rules. We can use the
morepath.AppBase.permission_rule() directive to do that.

This is very flexible. Let’s look at some examples.

Let’s give absolutely everybody view permission on Document:

@app.permission_rule(model=Document, permission=ViewPermission)
def document_view_permission(identity, model, permission)
    return True





Let’s give only those users that are in a list allowed_users on
the Document the edit permission:

@app.permission_rule(model=Document, permission=EditPermission)
def document_edit_permission(identity, model, permission):
    return identity.userid in model.allowed_users





This is just is one hypothetical rule. allowed_users on
Document objects is totally made up and not part of Morepath. Your
application can have any rule at all, using any data, to determine
whether someone has a permission.




Morepath Super Powers Go!

What if we don’t want to have to define permissions on a per-model
basis? In our application, we may have a generic way to check for
the edit permission on any kind of model. We can easily do that too,
as Morepath knows about inheritance:

@app.permission_rule(model=object, permission=EditPermission)
def has_edit_permission(identity, model, permission):
    ... some generic rule ...





This permission function is registered for model object, so will
be valid for all models in our application.

What if we want that policy for all models, except Document where
we want to do something else? We can do that too:

@app.permission_rule(model=Document, permission=EditPermission)
def document_edit_permission(identity, model, permission):
    ... some special rule ...





You can also register special rules that depend on identity. If you
pass identity=None, you can can register a permission policy for
when the user has not logged in yet and has no claimed identity:

@app.permission_rule(model=object, permission=EditPermission, identity=None)
def has_edit_permission_not_logged_in(identity, model, permission):
    return False





This permission check works in addition to the ones we specified
above.

If you want to defer to a completely generic permission engine, you
could define a permission check that works for any permission:

@app.permission_rule(model=object, permission=object)
def generic_permission_check(identity, model, permission):
     ... generic rule ...











          

      

      

    


    
         Copyright 2013-2014, Morepath developers.
      Created using Sphinx 1.2.2.
    

  

    
      Navigation

      
        	
          index

        	
          modules |

        	
          next |

        	
          previous |

        	Morepath 0.3 documentation 
 
      

    


    
      
          
            
  
REST


Introduction


How to think RESTful thoughts

So what does it mean for a web service to be RESTful? It might help to
remember this when thinking about REST:


client :: RESTful web service


is like:


human with browser :: well-designed multi-page web application


So if you have experience with developing good multi-page web
applications, then you can apply this experience to REST web service
design and you’re off to a good start.



In this section we’ll look at how you could go about implementing a
RESTful [https://en.wikipedia.org/wiki/Representational_state_transfer] web service with Morepath.

REST stands for Representational State Transfer, and is a particular
way to design web services. We won’t try to explain here why this
can be a good thing for you to do, just explain what is involved.

REST is not only useful for pure web services, but is also highly
relevant for web application development, especially when you are
building a single-page rich client application in JavaScript in the
web browser. It can be beneficial to organize the server-side
application as a RESTful web service.




Elements of REST

That’s all rather abstract. Let’s get more concrete. It’s useful to
refer to the Richardson Maturity Model for REST [http://martinfowler.com/articles/richardsonMaturityModel.html] in this context. In
REST we do the following:


	We uses HTTP as a transport system. What you use to communicate is
typically JSON or XML, but it could be anything.

	We don’t just use HTTP to tunnel method calls to a single
URL. Instead, we model our web service as resources, each with their
own URL, that we can interact with.

	We use HTTP methods meaningfully. Most importantly we use GET to
retrieve information, and POST when we want to change
information. Along with this we also use HTTP response status codes
meaningfully.

	We have links between the resources. So, one resource points to
another. A container resource could point to a link that you can
POST to create a new sub resource in it, for instance, and may
have a list of links to the resources in the container. See also
HATEOAS [https://en.wikipedia.org/wiki/HATEOAS].



Morepath has features that help you create RESTful applications.




HTTP as a transport system

We don’t really need to say much here, as Morepath is of course all
about HTTP in the end. Morepath lets you write a bare-bones view using
morepath.AppBase.view(). This also lets you pass in a render
function that lets you specify how to render the return value of the
view function as a morepath.Response. If you use JSON, for
convenience you can use morepath.AppBase.json() has a JSON
render function baked in.

We could for instance have a Document model in our application:

class Document(object):
    def __init__(self, id, title, author, content):
        self.id = id
        self.title = title
        self.author = author
        self.content = content





We can expose it on a URL:

@app.path(model=Document, path='documents/{id}')
def get_document(id):
   return document_by_id(id)





We assume here that a document_by_id() function exists that
returns a Document instance by id from some database, or None
if the document cannot be found. Any way to get your model instance is
fine.

Now we want a metadata resource that exposes its metadata as
JSON:

@app.json(model=Document, name='metadata')
def document_metadata(self, request):
    return {
      'id': self.id,
      'title': self.title,
      'author': self.author
    }








Modeling as resources

Modeling a web service as multiple resources comes pretty naturally to
Morepath, as it’s model-oriented in the first place. You can think
carefully about how to place models in the URL space and expose them
using morepath.AppBase.path(). In Morepath each model class can
only be exposed on a single URL (per app), which gives them a
canonical URL automatically.

A collection resource could be modelled like this:

class DocumentCollection(object):
    def __init__(self):
        self.documents = []

    def add(self, doc):
        self.documents.append(doc)





We now want to expose this collection to a URL path /documents. We
want:


	a resource /documents to GET the ids of all documents in the
collection.

	a resource /documents/add that lets you POST an id to it so that
this document is added to the collection.



Here is how we could make documents available on a URL:

documents = DocumentCollection()

@app.path(model=DocumentCollection, path='documents')
def documents_collection():
   return documents





When someone accesses /documents they should get a JSON structure which
includes ids of all documents in the collection. Here’s how to do
that:

@app.json(model=DocumentCollection)
def collection_default(self, request):
    return {
       'type': 'document_collection',
       'ids': [doc.id for doc in self.documents]
    }





Then we want to allow people to POST the document id (as a URL
parameter) to the /documents/add resource:

@app.json(model=DocumentCollection, name='add', request_method='POST')
def collection_add_document(self, request):
    doc = document_by_id(request.args['id'])
    self.add(doc)
    return {}





We again use the document_by_id function. We also return an empty
JSON object in the response; not very useful, but in this simple view
we don’t have anything more interesting to report when the POST
succeeds.

Note the use of request_method, which we’ll talk about
more next.

Note also that there are some things still missing: giving back a
proper response with status codes, and error handling when things go
wrong.




HTTP methods

As you saw above, we’ve used request_method to make sure that
/documents/add only works for POST requests.

By default, request_method is GET, meaning that /documents
only responds to a GET request, which is what we want. Let’s
make it explicit:

@app.json(model=DocumentCollection, request_method='GET')
def collection_default(self, request):
    ...





What if we had defined our web service differently, and instead of
having a /documents/add we wanted to allow the POSTing of document
ids on /documents directly? Here’s how you rewrite
collection_add_document to be the view directly on
/documents`:

@app.json(model=DocumentCollection, request_method='POST')
def collection_add_document(self, request):
    ...





It’s just a matter of removing the name parameter so that it becomes
the default view on DocumentCollection.




HTTP response status codes

When a view did its thing with success, Morepath automatically returns
the HTTP status code 200. When you try to access a URL that cannot
be routed to a model or a view, a 404 error is raised.

But what if the view did not manage to do something successfully? Let’s
get back to this view:

@app.json(model=DocumentCollection, name='add', request_method='POST')
def collection_add_document(self, request):
    doc = document_by_id(request.args['id'])
    self.add(doc)
    return {}





What if there is no id parameter in the request? That’s something
our application cannot handle: a bad request, status code 400.


What status code is right?

There is some debate over what status code to pick for particular
errors. Sometimes the HTTP specification is pretty clear, but in the
case of a missing parameter, it’s not. Status code 400 (Bad Request)
while according to the HTTP specd more about the syntax of a request
than its content, is still chosen by many implementers in case of
errors like this.

But no matter what kind of HTTP error you pick, how you cause them
to happen is the same: just raise the appropriate exception.



WebOb, the request/response library upon which Morepath is built,
defines a set of HTTP exception classes webob.exc that we can
use. In this case we need webob.exc.HTTPBadRequest. We modify
our view so it is raised if there was no id:

from webob.exc import HTTPBadRequest

@app.json(model=DocumentCollection, name='add', request_method='POST')
def collection_add_document(self, request):
    id = request.args.get('id')
    if id is None:
        raise HTTPBadRequest()
    doc = document_by_id(id)
    self.add(doc)
    return {}





We also want to deal with the situation where an id was given, but no
document with that id exists. Let’s handle that with 400 Bad Request
too:

@app.json(model=DocumentCollection, name='add', request_method='POST')
def collection_add_document(self, request):
    id = request.args.get('id')
    if id is None:
        raise BadRequest()
    doc = document_by_id(id)
    if doc is None:
        raise BadRequest()
    self.add(doc)
    return {}








Linking: HATEOAS

We’ve now reached the point where many would say that this is a
RESTful web service. But in fact a vital ingredient is still missing:
hyperlinks. That ugly acronym HATEOAS [https://en.wikipedia.org/wiki/HATEOAS] thing.


Hyperlinks!

Since hyperlinks are so commonly missing from web services that claim
to be RESTful, we’ll break our promise here not to motivate why REST
is good, and have a brief discussion on why hyperlinking is a good
idea.

Without hyperlinks, a client is coupled to the server in two ways:


	URLs: it needs to know what URLs the server exposes.

	Data: it needs to know how to interpret the data coming from the
server, and what data to send to the server.



Now add HATEOAS and get true REST. Now the client is coupled to the
server in only one way: data. It gets the URLs it needs from the
data. We gain looser coupling between server and client: the server
can change all its URLs and the client will continue to work.

You may quibble and say the client still needs to know the original
URL of the server to get started, and dig up all the other URLs from
the data afterward. That’s true – but that’s all that’s
needed. It’s normal. Think again like how a human interacts with the
web through the browser: you may use a search engine or bookmarks to
get the initial URL of a site, and then you go to pages in that site
by clicking links.



Morepath makes it very easy to create hyperlinks, so we won’t
have to do much. Let’s first modify our default GET view for
the collection so it also has a link to the add resource:

@app.json(model=DocumentCollection)
def collection_default(self, request):
    return {
       'type': 'document_collection',
       'ids': [doc.id for doc in self.documents],
       'add': request.link(documents, 'add')
    }





documents, if you can remember, is the instance of
DocumentCollection we were working with, and we want
to link to its add view.

Let’s make things more interesting though. Before we had the default
view for the collection return a list of document ids. We can change
this so we return a list of document URLs instead:

@app.json(model=DocumentCollection)
def collection_default(self, request):
    return {
       'type': 'document_collection',
       'documents': [request.link(doc) for doc in self.documents],
       'add': request.link(documents, 'add')
    }





Or perhaps better, include the id and the URL:

@app.json(model=DocumentCollection)
def collection_default(self, request):
    return {
       'type': 'document_collection',
       'documents': [dict(id=doc.id, link=request.link(doc))
                     for doc in self.documents],
       'add': request.link(documents, 'add')
    }





Now we’ve got HATEOAS: the collection links to the documents it
contains, and also to the add URL that can be used to add a new
document. The developers looking at the responses your web service
sends get a few clues about where to go next. Coupling is looser.

We got HATEOAS, so at last we got true REST. Why is hyperlinking so
often ignored? Why don’t more systems implement HATEOAS? Perhaps
because they make linking to things too hard or too brittle. Morepath
instead makes it easy. Link away!




Compose from reusable apps

If you’re going to create a larger RESTful web service, you should
start thinking about composing them from smaller applications. See
App Reuse for more information.







          

      

      

    


    
         Copyright 2013-2014, Morepath developers.
      Created using Sphinx 1.2.2.
    

  

    
      Navigation

      
        	
          index

        	
          modules |

        	
          next |

        	
          previous |

        	Morepath 0.3 documentation 
 
      

    


    
      
          
            
  
Settings


Introduction

A typical application has some settings: if an application logs, a
setting is the path to the log file. If an aplication sends email,
there are settings to control how email is sent, such as the email
address of the sender.

Applications that serve as frameworks for other applications may have
settings as well: the transaction_app defined by
more.transaction [https://github.com/morepath/more.transaction] for instance has settings controlling
transactional behavior.

Morepath has a powerful settings system that lets you define what
settings are available in your application and framework. It allows an
app that extends another app to override settings. This lets an app
that defines a framework can also define default settings that can be
overridden by the extending application if needed.




Defining a setting

You can define a setting using the AppBase.setting() directive:

@app.setting(section="logging", name="logfile")
def get_logfile():
    return "/path/to/logfile.log"





You can also use this directive to override a setting in another app:

sub = morepath.App(extends=[app])
@sub.setting(section="logging", name="logfile")
def get_logfile_too():
   return "/a/different/logfile.log"





Settings are grouped logically: a setting is in a section and has a
name. This way you can organize all settings that deal with logging
under the logging section.




Accessing a setting

During runtime, you can access the settings of the current application
using the morepath.settings() function, like this:

settings().logging.logfile





In a tween factory (see :doc:tweens) or a directive implementation,
you can access a setting through the app object like this:

app.settings.logging.logfile








Defining multiple settings

It can be convenient to define multiple settings in a section at once.
You can do this using the AppBase.setting_section() directive:

@app.setting_section(section="logging")
def get_setting_section():
    return {
       'logfile': "/path/to/logfile.log",
       'loglevel': logging.WARNING
    }





You can mix setting and setting_section freely, but you cannot
define a setting multiple times in the same app, as this will result
in a configuration conflict.







          

      

      

    


    
         Copyright 2013-2014, Morepath developers.
      Created using Sphinx 1.2.2.
    

  

    
      Navigation

      
        	
          index

        	
          modules |

        	
          next |

        	
          previous |

        	Morepath 0.3 documentation 
 
      

    


    
      
          
            
  
Organizing your Project


Introduction

Morepath does not put any requirements on how your Python code is
organized. You can organize your Python project as you see fit and put
app objects, paths, views, etc, anywhere you like. A single Python
package (or even module) may define a single Morepath app, but could
also define multiple apps. In this Morepath is like Python itself; the
Python language does not restrict you in how you organize functions
and classes.

While this leaves you free to organize your code as you see fit, that
doesn’t mean that your code shouldn’t be organized. Here are some
guidelines on how you may want to organize things in your own
project. But remember: these are guidelines to break when you see the
need.




Python project

It is recommended you organize your code in a Python project with a
setup.py where you declare the dependency on Morepath. If you’re
unfamiliar with how this works, you can check out this tutorial [http://pythonhosted.org/an_example_pypi_project/setuptools.html].

Doing this is good Python practice and makes it easy for you to
install and distribute your project using common tools like pip,
buildout and PyPI. In addition Morepath itself can also load its code
more easily.




Project layout

Here’s a quick overview of the files and directories of Morepath
project that follows the guidelines in this document:

myproject
    setup.py
    myproject
         __init__.py
        main.py
        model.py
        [collection.py]
        path.py
        view.py








Project setup

Here is an example of your project’s setup.py with only those
things relevant to Morepath shown and everything else cut out:

from setuptools import setup, find_packages

setup(name='myproject',
      packages=find_packages(),
      install_requires=[
         'morepath'
      ],
      entry_points={
         'console_scripts': [
          'myproject-start = myproject.main:main'
          ]
      })





This setup.py assumes you also have a myproject subdirectory
in your project directory that is a Python package, i.e. it contains
an __init__.py. This is the directory where you put your code. The
find_packages() call finds it for you.

The install_requires section declares the dependency on
Morepath. Doing this makes everybody who installs your project
automatically also pull in a release of Morepath and its own
dependencies. In addition, it lets this package be found and
configured when you use morepath.autosetup().

Finally there is an entry_points section that declares a console
script (something you can run on the command-prompt of your operating
system). When you install this project, a myproject-start script
is automatically generated that you can use to start up the web
server. It calls the main() function in the myproject.main
module. Let’s create this next.

See also the setuptools documentation [https://pythonhosted.org/setuptools/].




Project naming

Its possible to name your project differently than you name your
Python package; you could for instance have the name ThisProject
in setup.py, and then have your Python package be still called
myproject. We recommend naming the project the same as the Python
package to avoid confusion.




Namespace packages

Sometimes you have projects that are grouped in some way: they are all
created by the same organization or they are part of the same larger
project. In that case you can use Python namespace packages to make
this relationship clear. Let’s say you have a larger project called
myproject. The namespace package itself may not contain any code,
so unlike the example everywhere else in this document the
myproject directory is always empty but for a __init__.py.

Different sub-projects could then be called myproject.core,
myproject.wiki, etc. Let’s examine the files and directories of
myproject.core:

myproject.core
    setup.py
    myproject
        __init__.py
        core
            __init__.py
            main.py
            model.py
            [collection.py]
            path.py
            view.py





The change is the namespace package directory myproject that contains
a single file, __init__.py, that contains the following code to declare
it is a namespace package:

__import__('pkg_resources').declare_namespace(__name__)





Inside is the normal package called core.

setup.py is modified too to include a declaration in
namespace_packages, and we’ve changed the entry point:

setup(name='myproject.core',
      packages=find_packages(),
      namespace_packages=['myproject'],
      install_requires=[
         'morepath'
      ],
      entry_points={
         'console_scripts': [
          'myproject.core-start = myproject.core.main:main'
          ]
      })





See also the namespace packages documentation [http://pythonhosted.org/setuptools/setuptools.html#namespace-packages].




Main Module

The main.py module is where we define our Morepath app and allow a
way to start it up as a web server. Here’s a sketch of main.py:

import morepath

app = morepath.App()

def main():
   morepath.autosetup()
   morepath.run(app)





We create an app object, then have a main() function that is
going to be called by the myproject-start entry point we defined
in setup.py. This main function does two things:


	Use morepath.autosetup() to set up Morepath, including any
of your code.

	start a WSGI server for app on port localhost, port 5000. This
uses the standard library wsgiref WSGI server. Note that this should
only used for testing purposes, not production! For production, use
an external WSGI server.



The main module is also a good place to do other general configuration
for the application, such as setting up a database connection.


Variation: no or multiple entry points

Not all packages have an entry point to start it up: a framework app
that isn’t intended to be run directly may not define one. Some
packages may define multiple apps and multiple entry points.




Variation: waitress

Instead of using Morepath’s simple built-in WSGI server you can use
another WSGI server. The built-in WSGI server is only meant for
testing, so we strongly recommend doing so in production. Here’s how
you’d use Waitress [http://docs.pylonsproject.org/projects/waitress/en/latest/]. First we adjust setup.py so we also require
waitress:

...
      install_requires=[
         'morepath',
         'waitress'
      ],
...





Then we modify main.py to use waitress:

import waitress

...

def main():
   ...
   waitress.serve(app)








Variation: command-line WSGI servers

You could also do away with the entry point and instead use
waitress-serve on the command line directly. For this we need to
first create a factory function that returns the fully configured WSGI
app:

def wsgi_factory():
   morepath.autosetup()
   return app

$ waitress-serve --call myproject.main:wsgi_factory





This uses waitress’s --call functionality to invoke a WSGI factory
instead of a WSGI function. If you want to use a WSGI function
directly we have to create one using the wsgi_factory function we
just defined. To avoid circular dependencies you should do it in a
separate module that is only used for this purpose, say wsgi.py:

prepared_app = wsgi_factory()





You can then do:

$ waitress-serve myproject.wsgi:prepared_app





You can also use gunicorn [http://gunicorn.org] this way:

$ gunicorn -w 4 myproject.wsgi:prepared_app










Model module

The model.py module is where we define the models relevant to the
web application. They may integrate with some kind of database system,
for instance the SQLAlchemy [http://sqlalchemy.org] ORM. Note that your model code is
completely independent from Morepath and there is no reason to import
anything Morepath related into this module. Here is an example
model.py that just uses plain Python classes:

class Document(object):
    def __init__(self, id, title, content):
        self.id = id
        self.title = title
        self.content = content






Variation: models elsewhere

Sometimes you don’t want to include model definitions in the same
codebase that also implements a web application, as you would like to
reuse them outside of the web context without any dependencies on
Morepath. Your model classes are independent from Morepath, so this is
easy to do: just put them in a separate project and depend on it from
your web project.

You can also have a project that reuses models defined by another
Morepath project. Each Morepath app is isolated from the others by
default, so you could remix its models into a whole new web
application.




Variation: collection module

An application tends to contain two kinds of models:


	content object models, i.e. a Document. If you use an ORM like
SQLAlchemy these would typically be backed by a table.

	collection models, i.e. a collection of documents. This typically
let you browse content models, search/filter for them, and let you
add or remove them.



Since collection models tend to not be backed by a database directly
but are often application-specific classes, it can make sense to
maintain them in a separate collection.py module. This module,
like model.py also does not have any dependencies on Morepath.






Path module

Now that we have models, we need to publish them on the web. First we need
to define their paths. We do this in a path.py module:

from myproject.main import app
from myproject import model

@app.path(model=model.Document, path='documents/{id}')
def get_document(id):
   if id != 'foo':
      return None # not found
   return Document('foo', 'Foo document', 'FOO!')





In the functions decorated by AppBase.path() we do whatever
query is necessary to retrieve the model instance from a database, or
return None if the model cannot be found.

Morepath allows you to scatter @app.path decorators throughout
your codebase, but by putting them all together in a single module it
becomes really easy to inspect and adjust the URL structure of your
application, and to see exactly what is done to query or construct the
model instances. Once it becomes really big you can always split a
single path module into multiple ones, though at that point you may
want to consider splitting off a separate project with its own
application instead.




View module

We have models and they’re published on a path. Now we need to represent
them as actual web resources. We do this in the view.py module:

from myproject.main import app
from myproject import model

@app.json(model=model.Document)
def document_default(self, request):
    return {'id': self.id, 'title': self.title, 'content': self.content }





Here we use AppBase.view(), AppBase.json() and
AppBase.html() directives to declare views.

By putting them all in a view module it becomes easy to inspect and
adjust how models are represented, but of course if this becomes large
it’s easy to split it into multiple modules.







          

      

      

    


    
         Copyright 2013-2014, Morepath developers.
      Created using Sphinx 1.2.2.
    

  

    
      Navigation

      
        	
          index

        	
          modules |

        	
          next |

        	
          previous |

        	Morepath 0.3 documentation 
 
      

    


    
      
          
            
  
App Reuse

Morepath is a microframework with a difference: it’s small and easy to
learn like the others, but has special super powers under the hood.

One of those super powers is Reg [http://blog.startifact.com/posts/reg-now-with-more-generic.html], which along with Morepath’s
model/view separation makes it easy to write reusable views. But here
we’ll talk about another super power: Morepath’s application reuse
facilities.

We’ll talk about how Morepath lets you isolate applications, extend
and override applications, and compose applications together. Morepath
tries to make these things simple.


Application Isolation

Morepath lets you create app objects like this:

app = morepath.App()





These app objects are WSGI applications, but also serve as registries
for application configuration information. This configuration is
specify used decorators. Apps consist of paths and views for models:

@app.path(model=User, path='users/{username}')
def get_user(username):
    return query_for_user(username)

@app.view(model=User)
def render_user(self, request):
    return "User: %s" % self.username





Here we’ve exposed the User model class under the path
/users/{username}. When you go to such a URL, the default
(unnamed) view is found. We’ve provided that too: it just renders
“User: {username}”.

What now if we have another app where we want to publish User in a
different way? No problem, we can just create one:

other_app = morepath.App()
@other_app.path(model=User, path='different_path/{username}')
def get_user(username):
    return different_query_for_user(username)

@other_app.view(model=User)
def render_user(self, request):
    return "Differently Displayed User: %s" % self.username





Here we expose User to the web again, but use a different path and
a different view. If you run other_app (even in the same runtime), it
functions independently from app.

This app isolation is nothing really special; it’s kind of obvious
that this is possible. But that’s what we wanted. Let’s look at a few
more involved possibilities next.




Application Extension

Let’s look at our first application app again. It exposes a single
view for users (the default view). What now if we want to add a new
functionality to this application so that we can edit users as well?

This is simple; we can add a new edit view to app:

@app.view(model=User, name='edit')
def edit_user(self, request):
    return 'Edit user: %s' % self.username





The string we return here is of course useless for a real edit view,
but you get the idea.

But what if we have a scenario where there is a core application and
we want to extend it without modifying it?

Why would this ever happen, you may ask? Well, it can, especially in
more complex applications and reuse scenarios. Often you have a common
application core and you want to be able to plug into it. Meanwhile,
you want that core application to still function as before when used
(or tested!) by itself. Perhaps there’s somebody else who has created
another extension of it.

This architectural principle is called the Open/Closed Principle [https://en.wikipedia.org/wiki/Open/closed_principle] in
software engineering, and Morepath makes it really easy to follow
it. What you do is create another app that extends the original:

extended_app = morepath.App(extends=[app])





And then we can add the view to the extended app:

@extended_app.view(model=User, name='edit')
def edit_user(self, request):
    return 'Edit user: %s' % self.username





Now when we publish extended_app using WSGI, the new edit view
is there, but when we publish app it won’t be.

Kind of obvious, perhaps. Good. Let’s move on.




Application Overrides

Now we get to a more exciting example: overriding applications. What
if instead of adding an extension to a core application you want to
override part of it? For instance, what if we want to change the
default view for User?

Here’s how we can do that:

@extended_app.view(model=User)
def render_user_differently(self, request):
    return 'Different view for user: %s' % self.username





We’ve now overridden the default view for User to a new view that
renders it differently.

You can also do this for what is returned for model paths. We might
for instance want to return a different user object altogether in
our overriding app:

@extended_app.path(model=OtherUser, path='users/{username}')
def get_user_differently(username):
    return OtherUser(username)





To make OtherUser actually be published on the web under
/users/{username} it either needs to be a subclass of User, for
which we’ve already registered a default view, or we need to register
a new default view for OtherUser.

Overriding apps actually doesn’t look much different from how you
build apps in the first place. Hopefully not so obvious that it’s
boring. Let’s talk about something new.




Nesting Applications

Let’s talk about application composition: nesting one app in another.

Imagine our user app allows users to have wikis associated with them.
It has paths like /users/faassen/wiki and /users/bob/wiki.

One approach might be to implement a wiki application within the user
application we already have, along these lines:

@app.path(model=Wiki, path='users/{username}/wiki')
def get_wiki(username):
    return wiki_for_user(username)

@app.view(model=Wiki)
def wiki_default_view(request, model):
    return "Default view for wiki"





(this is massively simplified of course. we’d also have a Page
model that’s exposed on a sub-path under the wiki, with its own views,
etc)

But this feels bad. Why?


	Why would we implement a wiki as part of our user app? Our wiki
application should really be an app by itself, that we can use
byitself and also test by itself.

	There’s the issue of the username: it appears in all paths that go
to wiki-related models (the wiki itself, any wiki pages). But why
should we have to care about the username of a user when we are
thinking about wikis?

	It would also be nice if we can use the wiki app in other contexts
as well, instead of only letting it be associated with users. What
about associating a wiki app with a project instead, like you can do
in github?



A separate app for wikis seems obvious. So let’s do it. Here’s the
wiki app by itself:

wiki_app = morepath.App()

@wiki_app.path(model=Wiki, path='{wiki_id}')
def get_wiki(wiki_id):
    return query_wiki(wiki_id)

@wiki_app.view(model=Wiki)
def wiki_default_view(self, request):
    return "Default view for wiki"





This is an app that exposes wikis on URLs using wiki_id, like
/my_wiki, /another_wiki.

But that won’t work if we want to associate wikis with users. What if
we want the paths we had before, like /users/faassen/wiki?

Morepath has a solution. We can mount the wiki app in the user app,
like this:

@app.mount(app=wiki_app, path='users/{username}/wiki')
def mount_wiki(username):
    return {
       'wiki_id': get_wiki_id_for_username(username)
    }





We do need to adjust the wiki app a bit as right now it expects
wiki_id to be in its paths, and the wiki id won’t show up when
mounted. We need to do two things: tell the wiki app that we expect
the wiki_id variable:

wiki_app = morepath.App(variables=['wiki_id'])





And we need to register the model so that its path is empty:

@wiki_app.path(model=Wiki, path='')
def get_wiki(wiki_id):
    return query_wiki(wiki_id)





But where does wiki_id come from now if not from the path? We
already have it: it was determined when the app was mounted, and comes
from the dictionary that we return from mount_wiki().

What if we want to use wiki_app by itself, as a WSGI app? That can
be useful, also for testing purposes. It needs this wiki_id
parameter now. We can construct this WSGI app from wiki_app by
mounting it explicitly:

wsgi_app = wiki_app.mounted(wiki_id=5)





This is a WSGI app that we can run by itself that uses wiki_id.




Linking to other mounted apps

When we have one app mounted inside another, we want a way to make links
between them.

You can use morepath.Request.parent to link to an object in an
app’s parent app:

request.parent.link(obj)





If there is no parent application, this raises a
morepath.error.LinkError.

You can use morepath.Request.child() to link to an object in a
mounted child application:

request.child(child_app).link(obj)





If the child_app is not mounted here, this will also raise a
morepath.error.LinkError.

This won’t work though in the case of wiki_app of the previous
example, as it mounted inside app using the username. Here’s
how we supply it to get the appropriate wiki_app:

request.child(wiki_app, username='foo').link(obj)





You can compose parent and child together in order to get to
anywhere in the mounted app graph; getting to a sibling app for
instance looks like this:

app.parent.child(sibling_app)





Besides using .link you can also use .view this way.




Application Reuse

Many web frameworks have mechanisms for overriding specific behavior
and to support reusable applications. These tend to have been
developed in an ad-hoc fashion as new needs arose.

Morepath instead has a general mechanism for supporting app
extension and reuse. You use the same principles and APIs you already
use to create new applications. Any normal Morepath app can without
extra effort be reused. Anything registered in a Morepath app can be
overridden. This is because Morepath builds on a powerful general
configuration system.




Further reading

To see an extended example of how you can structure larger
applications to support reuse, see Building Large Applications.







          

      

      

    


    
         Copyright 2013-2014, Morepath developers.
      Created using Sphinx 1.2.2.
    

  

    
      Navigation

      
        	
          index

        	
          modules |

        	
          next |

        	
          previous |

        	Morepath 0.3 documentation 
 
      

    


    
      
          
            
  
Building Large Applications


Introduction

A small web application is relatively easy to understand. It does
less stuff. That makes the application easier to understand: the UI
(or REST web service) is smaller, and the codebase too.

But sometimes we need larger web applications. Morepath offers a
number of facilities to help you manage the complexity of larger web
applications:


	Morepath lets you build larger applications from multiple smaller
ones. A CMS may for instance be composed of a document management
application and a user management application. This is much like how
you manage complexity in a codebase by decomposing it into smaller
functions and classes.

	Morepath lets you factor out common, reusable functionality. In
other words, Morepath helps you build frameworks, not just
end-user applications. For instance, you may have multiple places in
an application where you need to represent a large result-set in
smaller batches (with previous/next), and they should share common
code.



There is also the case of reusable applications. Larger applications
are often deployed multiple times. An open source CMS is a good
example: different organizations each have their own installation. Or
imagine a company with an application that it sells to its customers:
each customer can have its own special deployment.

Different deployments of an application have real differences as every
organization has different requirements. This means that you need to
be able to customize and extend the application to fit the purposes of
each particular deployment. As a result the application has to
take on framework-like properties. Morepath recognizes that there is a
large gray area between application and framework, and offers support
to build framework-like applications and application-like frameworks.

The document doc:app_reuse describes the basic facilities Morepath
offers for application reuse. The document
Organizing your Project describes how a single application
project can be organized, and we will follow its guidelines in this
document.

This document sketches out an example of a larger application that
consists of multiple sub-projects and sub-apps, and that needs
customization.




A Code Hosting Site

Our example large application is a code hosting site along the lines
of Github or Bitbucket. This example is a sketch, not a complete
working application. We focus on the structure of the application as
opposed to the details of the UI.

Let’s examine the URL structure of a code hosting site. Our hypothetical
code hosting site lives on example.com:

example.com





A user (or organization) has a URL directly under the root with the
user name or organization name included:

example.com/faassen





Under this URL we can find repositories, using the project name
in the URL:

example.com/faassen/myproject





We can interact with repository settings on this URL:

example.com/faassen/myproject/settings





We also have a per-repository issue tracker:

example.com/faassen/myproject/issues





And a per-repository wiki:

example.com/faassen/myproject/wiki








Simplest approach

The simplest approach to make this URL structure work is to implement all
paths in a single application, like this:

from .model import Root, User, Repository, Settings, Issues, Wiki

app = morepath.App()

@app.path(path='', model=Root)
def get_root():
   ...

@app.path(path='{user_name}', model=User)
def get_user(user_name):
   ...

@app.path(path='{user_name}/{repository_name}', model=Repository)
def get_repository(user_name, repository_name):
   ...





We could try to implement settings, issues and wiki as views on
repository, but these are complicated pieces of functionality that
benefit from having sub-URLs (i.e. issues/12 or
...wiki/mypage), so we model them using paths as well:

@app.path(path='{user_name}/{repository_name}/settings', model=Settings)
def get_settings(user_name, repository_name):
   ...

@app.path(path='{user_name}/{repository_name}/issues', model=Issues)
def get_issues(user_name, repository_name):
   ...

@app.path(path='{user_name}/{repository_name}/wiki', model=Wiki)
def get_wiki(user_name, repository_name):
   ...





Let’s also make path to an individual issue,
i.e. example.com/faassen/myproject/issues/12:

from .model import Issue

@app.path(path='{user_name}/{repository_name}/issues/{issue_id}', model=Issue)
def get_issue(user, repository, issue_id):
    ...








Problems

This approach works perfectly well, and it’s often the right way to
start, but there are some problems with it:


	The URL patterns in the path are repetitive; for each sub-model
under the repository we keep having to repeat
‘{user_name}/{repository_name}`.

	We may want to be able to test the wiki or issue tracker during
development without having to worry about setting up the whole outer
application.

	We may want to reuse the wiki application elsewhere, or in multiple
places in the same larger application. But user_name and
repository_name are now hardcoded in the way to get any sub-path
into the wiki.

	We could have different teams developing the core app and the wiki
(and issue tracker, etc). It would be nice to partition the code so
that the wiki developers don’t need to look at the core app code and
vice versa.

	You may want the abilitity to swap in new implementations of a issue
tracker or a wiki under the same paths, without having to change a lot
of code.



We’re going to show how Morepath can solve these problems by
partitioning a larger app into smaller ones, and mounting them. The
code to accomplish this is more involved than simply declaring all
paths under a single core app as we did before. If you feel more
comfortable doing that, by all means do so; you don’t have these
problems. But if your application is successful and grows larger you
may encounter these problems, and Morepath is there to help.

We’ll now show what changes you would make.




Multiple sub-apps

Let’s split up the larger app into multiple sub apps. How many
sub-apps do we need? We could go and partition things up into many
sub-applications, but that risks getting lost in another kind of
complexity. So let’s start with three application:


	core app, everything up to repository, and including settings.

	issue tracker app.

	wiki sub app.



In code:

core_app = morepath.App()

issues_app = morepath.App(variables=['issues_id'])

wiki_app = morepath.App(variables=['wiki_id'])





Note that issues_app and wiki_app expect variables; we’ll
learn more about this later.

We now can group our paths into three. First we have the core app,
which includes the repository and its settings:

@core_app.path(path='', model=Root)
def get_root():
   ...

@core_app.path(path='{user_name}', model=User)
def get_user(user_name):
   ...

@core_app.path(path='{user_name}/{repository_name}', model=Repository)
def get_repository(user_name, repository_name):
   ...

@core_app.path(path='{user_name}/{repository_name}/settings', model=Settings)
def get_settings(user_name, repository_name):
   ...





Then we have the paths for our issue tracker:

@issues_app.path(path='', model=Issues)
def get_issues(issues_id):
   ...

@issues_app.path(path='{issue_id}', model=Issue)
def get_issue(issues_id, issue_id):
    ...





And the paths for our wiki:

@wiki_app.path(path='', model=Wiki)
def get_wiki(wiki_id):
   ...





We have drastically simplified the paths in issues_app and
wiki_app; we don’t deal with user_name and repository_name
anymore. Instead we get a issues_id and wiki_id, but not from
the path. Where does they come from? They are specified by the
variables argument for morepath.App that we saw
earlier. Next we need to explore the AppBase.mount() directive
to see how they are actually obtained.




Mounting apps

Now that we have an independent issues_app and wiki_app, we want
to be able to mount these under the right URLs under core_app. We
do this using the mount directive:

@core_app.mount(path='{user_name}/{repository_name}/issues',
                app=issues_app)
def mount_issues(user_name, repository_name):
    return { 'issues_id': get_issues_id(user_name, repository_name) }





Let’s look at what this does:


	@core_app.mount: We mount something onto core_app.

	app=issues_app: We are mounting issues_app.

	path='{user_name}/{repository_name}/issues': We are mounting it
on that path. All sub-paths in the issue tracker app will fall under
it.

	The mount_issues function takes the path variables user_name
and repository_name as arguments. It then returns a dictionary
with the mount variables expected by issues_app, in this case
issues_id. It does this by using get_issues_id, which does
some kind of database access in order to determine issues_id for
user_name and repository_name.



Mounting the wiki is very similar:

@core_app.mount(path='{user_name}/{repository_name}/wiki',
                app=wiki_app)
def mount_wiki(user_name, repository_name):
    return { 'wiki_id': get_wiki_id(user_name, repository_name) }








No more path repetition

We have solved the repetition of paths issue now; the issue tracker
and wiki can consist of many paths, but there is no more need to
repeat ‘{user_name}/{repository_name}’ everywhere.




Testing in isolation

To test the issue tracker by itself, we can run it as a separate WSGI app.
To do this we first need to mount it using an issues_id:

def run_issue_tracker():
    mounted = issues_app.mount(issues_id=4)
    morepath.run(mounted)





Here we mount and run the issues_app with issue tracker id
4. We can hook the run_issue_tracker function up to a script
by using an entry point in setup.py as we’ve seen in
Organizing your Project.




Reusing an app

We can now reuse the issue tracker app in the sense that we can mount
it in different apps; all we need is a way to get issues_id. But
what if we want to mount the issue tracker app in a separate project
altogether? To use it we would need to import it from our project that
also contains the core app and the wiki app, meaning that the new
project would need to depend on all of this code. That can hinder
reuse.

To make it more reusable across projects we can instead maintain the
code for the issue tracker app in a separate project, and the same for
the wiki app. The core app can then depend on the issue tracker and
wiki projects. Another app that also wants to have an issue tracker
can depend on the issue tracker project too.

To do this we’d split our code into three separate Python projects,
for instance:


	myproject.core

	myproject.issues

	myproject.wiki



Each would be organized as described in
Organizing your Project.

myproject.core would have an install_requires in its
setup.py that depends on myproject.issues and
myproject.wiki. To get issues_app and wiki_app in order to
mount them in the core, we would simply import them (for instance in
myproject.core.main):

from myproject.issues.main import issues_app
from myproject.wiki.main import wiki_app








Different teams

Now that we have separate projects for the core, issue tracker and
wiki, it becomes possible for a team to focus on the wiki without
having to worry about core or the issue tracker and vice versa.

This may in fact be of benefit even when you alone are working on all
three projects! When developing software it is important to free up
your brain so you only have to worry about one detail at the time:
this an important reason why we decomposition logic into functions and
classes. By decomposing the project into three independent ones, you
can temporarily forget about the core when you’re working on the issue
tracker, letting you free up your brain.




Swapping in a new sub-app

Perhaps a different, better wiki implementation is developed. Let’s
call it shiny_new_wiki_app. Swapping in the new sub application
is easy: it’s just a matter of changing the mount directive:

@core_app.mount(path='{user_name}/{repository_name}/wiki',
                app=shiny_new_wiki_app)
def mount_wiki(user_name, repository_name):
    return { 'wiki_id': get_wiki_id(user_name, repository_name) }








Customizing an app

Let’s change gears and talk about customization now.

Imagine a scenario where a particular customer wants exactly core
app, really, it’s perfect, but then ... wait for it ... they actually
need a minor tweak.

Let’s say they want an extra view on Repository that shows some
important customer-specific metadata. This metadata is retrieved from
a customer-specific extra database, so we cannot just add it to core
app. Besides, this new view isn’t useful to other customers.

What we need to do is create a new customer specific core app in a
separate project that is exactly like the original core app by
extending it, but with the one extra view added. Let’s call the
project important_customer.core. important_customer.core has
an install_requires in its setup.py that depends on
myproject.core and also the customer database (which we imagine is
called customerdatabase).

Now we can import core_app from it in
important_customer.core‘s main.py module, and extend from it:

from myproject.core.main import core_app

customer_app = morepath.App(extends=[core_app])





At this point customer_app behaves identically to
core_app. Now let’s make our customization and add a new JSON view
to Repository:

from myproject.core.model import Repository
# customer specific database
from customerdatabase import query_metadata

@customer_app.json(model=Repository, name='customer_metadata')
def repository_customer_metadata(self, request):
    metadata = query_metadata(self.id) # use repository id to find it
    return {
      'special_marketing_info': medata.marketing_info,
      'internal_description': metadata.description
    }





You can now run customer_app and get the core app with exactly the
one tweak the customer wanted: a view with the extra metadata. The
important_customer.core project depends on customerdatabase,
but myproject.core remains unchanged.

We’ve now made exactly the tweak necessary without having to modify
our original project. The original project continues to work the same
way it always did.




Swapping in, for one customer

Morepath lets you add any directive, not just views. It also lets you
override things in the applications you extend. What if we had a new
wiki like before, but we only want to upgrade one particular to it,
and leave the others with the original? Perhaps our important customer
needs exactly the wiki app mounted in core app, really, it’s
perfect... but they actually need a minor tweak to the wiki too.

We’d tweak the wiki just as we would tweak the core app. We end up
with a tweaked_wiki_app:

from myproject.wiki.main import wiki_app

tweaked_wiki_app = morepath.App(extends=[wiki_app])

# some kind of tweak
@tweaked_wiki_app.json(model=WikiPage, name='extra_info')
def page_extra_info(self, request):
    ...





We now want a new version of core_app just for this customer that
mounts tweaked_wiki_app instead of wiki_app:

important_customer_app = morepath.App(extends=[core_app])

@important_customer_app.mount(path='{user_name}/{repository_name}/wiki',
                              app=tweaked_wiki_app)
def mount_wiki(user_name, repository_name):
    return { 'wiki_id': get_wiki_id(user_name, repository_name) }





The mount directive above overrides the one in the core_app
that we’re extending, because it uses the same path but mounts
tweaked_wiki_app instead.

You can override any other directive (path, view, etc) the same way.




Framework apps

A morepath.App instance does not need to be a full working web
application. Instead it can be a framework consisting of just a few
with only those paths, subpaths and views that we intend to be
reusable.

For views this works together well with Morepath’s understanding of
inheritance. We could for instance have a base class
Metadata. Whenever any model subclasses from it, we want that
model to gain a metadata view that returns this metadata as JSON
data. Let’s write some code for that:

framework = morepath.App()

class Metadata(object):
    def __init__(self, d):
        self.d = d # metadata dictionary

    def get_metadata(self):
        return self.d

@framework.json(model=Metadata, name='metadata')
def metadata_view(self, request):
    return self.get_metadata()





We want to use this framework in our own application:

app = morepath.App(extends=[framework])





Let’s have a model that subclasses from Metadata:

class Document(Metadata):
    ...





Let’s put the model on a path:

@app.path(path='documents/{id}', model=Document)
def get_document(id):
    ...





Since app extends framework, all documents published this way
have a metadata view automatically. Apps that don’t extend
framework won’t have this behavior, of course.

As we mentioned before, there is a gray area between application and
framework; applications tend to gain attributes of a framework, and
larger frameworks start to look more like applications. Don’t worry
too much about which is which, but enjoy the creative possibilities!

Note that Morepath itself is actually a framework app that your apps
extend automatically. This means you can override parts of it (say,
how links are generated) just like you would override a framework app!
We did our best to make Morepath do the right thing already, but if
not, you can customize it.







          

      

      

    


    
         Copyright 2013-2014, Morepath developers.
      Created using Sphinx 1.2.2.
    

  

    
      Navigation

      
        	
          index

        	
          modules |

        	
          next |

        	
          previous |

        	Morepath 0.3 documentation 
 
      

    


    
      
          
            
  
Tweens


Introduction

Tweens are a light-weight framework component that sits between the
web server and the app. It’s very similar to a WSGI middleware, except
that a tween has access to the Morepath API and is therefore less
low-level.

Tweens can be used to implement transaction handling, logging, error
handling and the like.




signature of a handler

Morepath has an internal publish function that takes a single
morepath.Request argument, and returns a
morepath.Response as a result:

def publish(request):
    ...
    return response





Tweens have the same signature.

We call such functions handlers.




Under and over

Given a handler, we can create a factory that creates a tween that
wraps around it:

def make_tween(app, handler):
    def my_tween(request):
        print "Enter"
        response = handler(request)
        print "Exit"
        return response





We say that my_tween is over the handler argument, and
conversely that handler is under my_tween.

The application constructs a chain of tween over tween, ultimately
reaching the request handler. Request come in in the outermost tween
and descend down the chain into the underlying tweens, and finally
into the Morepath publish handler itself.




What can a tween do?

A tween can:


	amend or replace the request before it goes in to the handler under it.

	amend or replace the response before it goes back out to the handler
over it.

	inspect the request and completely take over response generation for
some requests.

	catch and handle exceptions raised by the handler under it.

	do things before and after the request is handled: this can be
logging, or commit or abort a database transaction.






Creating a tween factory

To have a tween, we need to add a tween factory to the app. The tween
factory is a function that given a handler constructs a tween. You can
register a tween factory using the AppBase.tween_factory()
directive:

@app.tween_factory()
def make_tween(app, handler):
    def my_tween(request):
        print "Enter"
        response = handler(request)
        print "Exit"
        return response





The tween chain is now:

my_tween -> publish





It can be useful to control the order of the tween chain. You can do this
by passing under or over to tween_factory:

@app.tween_factory(over=make_tween)
def make_another_tween(app, handler):
    def another_tween(request):
        print "Another"
        return handler(request)





The tween chain is now:

another_tween -> my_tween -> publish





If instead you used under:

@app.tween_factory(under=make_tween)
def make_another_tween(app, handler):
    def another_tween(request):
        print "Another"
        return handler(request)





Then the tween chain is:

my_tween -> another_tween -> publish








Tweens and settings

A tween factory may need access to some application settings in order
to construct its tweens. A logging tween for instance needs access to
a setting that indicates the path of the logfile.

The tween factory gets two arguments: the app and the handler. You can
then access the app’s settings using app.settings. See also the
Settings section.




Tweens and apps

You can register different tween factories in different Morepath
apps. A tween factory only has an effect when the app under which it
is registered is being run directly as a WSGI app. A tween factory has
no effect if its app is mounted under another app. Only the tweens of
the outer app are in effect at that point, and they are also in
effect for any apps mounted into it.

This means that if you install a logging tween in an app, and you run
this app with a WSGI server, the logging takes place for that app and
any other app that may be mounted into it, directly or indirectly.




more.transaction

If you need to integrate SQLAlchemy or the ZODB into Morepath,
Morepath offers a special app you can extend that includes a
transaction tween that interfaces with the transaction [https://pypi.python.org/pypi/transaction] package. The
morepath_sqlalchemy [https://github.com/morepath/morepath_sqlalchemy] demo project gives an example of what that
looks like with SQLAlchemy.







          

      

      

    


    
         Copyright 2013-2014, Morepath developers.
      Created using Sphinx 1.2.2.
    

  

    
      Navigation

      
        	
          index

        	
          modules |

        	
          next |

        	
          previous |

        	Morepath 0.3 documentation 
 
      

    


    
      
          
            
  
Morepath API


	
class morepath.App(name=None, extends=None, variables=None, testing_config=None)

	A Morepath-based application object.

Extends AppBase and through it
morepath.config.Configurable, reg.ClassRegistry [http://reg.readthedocs.org/en/latest/api.html#reg.ClassRegistry]
and morepath.converter.ConverterRegistry.

You can configure an application using Morepath decorator directives.

An application can extend one or more other applications, if
desired.  All morepath App’s descend from global_app however,
which contains the base configuration of the Morepath framework.

Conflicting configuration within an app is automatically
rejected. An extended app cannot conflict with the apps it is
extending however; instead configuration is overridden.





	Parameters:	
	name (str) – A name for this application. This is used in
error reporting.

	extends (list, App or None) – App objects that this
app extends/overrides.

	variables (list or set) – variable names that
this application expects when mounted. Optional.

	testing_config – a morepath.Config that actions
are added to directly, instead of waiting for
a scanning phase. This is handy during testing. If you want to
use decorators inline in a test function, supply a
testing_config. It’s not useful outside of tests. Optional.














	
class morepath.AppBase(name=None, extends=None, variables=None, testing_config=None)

	Base for application objects.

Extends morepath.config.Configurable,
reg.ClassRegistry [http://reg.readthedocs.org/en/latest/api.html#reg.ClassRegistry] and
morepath.converter.ConverterRegistry.

The application base is split from the App
class so that we can have an App class that automatically
extends from global_app, which defines the Morepath framework
itself.  Normally you would use App instead this one.

AppBase can be used as a WSGI application, i.e. it can be called
with environ and start_response arguments.





	Parameters:	
	name (str) – A name for this application. This is used in
error reporting.

	extends (list, App or None) – App objects that this
app extends/overrides.

	variables (list or set) – variable names that
this application expects when mounted. Optional.

	testing_config – a morepath.Config that actions
are added to directly, instead of waiting for
a scanning phase. This is handy during testing. If you want to
use decorators inline in a test function, supply a
testing_config. It’s not useful outside of tests. Optional.










	
@converter(type)

	Register custom converter for type.





	Parameters:	type – the Python type for which to register the
converter.  Morepath uses converters when converting path
variables and URL parameters when decoding or encoding
URLs. Morepath looks up the converter using the
type. The type is either given explicitly as the value in
the converters dictionary in the
morepath.AppBase.path() directive, or is deduced from
the value of the default argument of the decorated model
function or class using type().










	
@function(target, *sources)

	Register function as implementation of generic function

The decorated function is an implementation of the generic
function supplied to the decorator. This way you can override
parts of the Morepath framework, or create new hookable
functions of your own. This is a layer over
reg.IRegistry.register() [http://reg.readthedocs.org/en/latest/api.html#reg.IRegistry.register].





	Parameters:	
	target (function object) – the generic function to register an implementation for.

	sources – classes of parameters to register for.














	
@html(model, render=None, permission=None, internal=False, **predicates)

	Register HTML view.

This is like morepath.AppBase.view(), but with
morepath.render_html() as default for the render
function.

Sets the content type to text/html.





	Parameters:	
	model – the class of the model for which this view is registered.

	name – the name of the view as it appears in the URL. If omitted,
it is the empty string, meaning the default view for the model.

	render – an optional function that can render the output of the
view function to a response, and possibly set headers such as
Content-Type, etc. Renders as HTML by default.

	permission – a permission class. The model should have this
permission, otherwise access to this view is forbidden. If omitted,
the view function is public.

	internal – Whether this view is internal only. If
True, the view is only useful programmatically using
morepath.Request.view(), but will not be published on
the web. It will be as if the view is not there.
By default a view is False, so not internal.

	name – the name of the view as it appears in the URL. If omitted,
it is the empty string, meaning the default view for the model.
This is a predicate.

	request_method – the request method to which this view should
answer, i.e. GET, POST, etc. If omitted, this view will respond to
GET requests only. This is a predicate.

	predicates – predicates to match this view on. See the
documentation of AppBase.view() for more information.














	
@identity_policy

	Register identity policy.

The decorated function should return an instance of an
identity policy, which should have identify, remember
and forget methods.






	
@json(model, render=None, permission=None, internal=False, **predicates)

	Register JSON view.

This is like morepath.AppBase.view(), but with
morepath.render_json() as default for the render
function.

Transforms the view output to JSON and sets the content type to
application/json.





	Parameters:	
	model – the class of the model for which this view is registered.

	name – the name of the view as it appears in the URL. If omitted,
it is the empty string, meaning the default view for the model.

	render – an optional function that can render the output of the
view function to a response, and possibly set headers such as
Content-Type, etc. Renders as JSON by default.

	permission – a permission class. The model should have this
permission, otherwise access to this view is forbidden. If omitted,
the view function is public.

	internal – Whether this view is internal only. If
True, the view is only useful programmatically using
morepath.Request.view(), but will not be published on
the web. It will be as if the view is not there.
By default a view is False, so not internal.

	name – the name of the view as it appears in the URL. If omitted,
it is the empty string, meaning the default view for the model.
This is a predicate.

	request_method – the request method to which this view should
answer, i.e. GET, POST, etc. If omitted, this view will respond to
GET requests only. This is a predicate.

	predicates – predicates to match this view on. See the
documentation of AppBase.view() for more information.














	
@mount(path, app, converters=None, required=None, get_converters=None)

	Mount sub application on path.

The decorated function gets the variables specified in path as
parameters. It should return a dictionary with the required
variables for the mounted app. The variables are declared in
the morepath.App constructor.





	Parameters:	
	path – the path to mount the application on.

	app – the morepath.App instance to mount.

	converters – converters as for the
morepath.AppBase.path() directive.

	required – list or set of names of those URL parameters which
should be required, i.e. if missing a 400 Bad Request response is
given. Any default value is ignored. Has no effect on path
variables. Optional.

	get_converters – a function that returns a converter dictionary.
This function is called once during configuration time. It can
be used to programmatically supply converters. It is merged
with the converters dictionary, if supplied. Optional.














	
@path(path, model=None, variables=None, converters=None, required=None, get_converters=None, absorb=False)

	Register a model for a path.

Decorate a function or a class (constructor). The function
should return an instance of the model class, for instance by
querying it from the database, or None if the model does
not exist.

The decorated function gets as arguments any variables
specified in the path as well as URL parameters.

If you declare a request parameter the function is
able to use that information too.





	Parameters:	
	path – the route for which the model is registered.

	model – the class of the model that the decorated function
should return. If the directive is used on a class instead of a
function, the model should not be provided.

	variables – a function that given a model object can construct
the variables used in the path (including any URL parameters).
If omitted, variables are retrieved from the model by using
the arguments of the decorated function.

	converters – a dictionary containing converters for variables.
The key is the variable name, the value is a
morepath.Converter instance.

	required – list or set of names of those URL parameters which
should be required, i.e. if missing a 400 Bad Request response is
given. Any default value is ignored. Has no effect on path
variables. Optional.

	get_converters – a function that returns a converter dictionary.
This function is called once during configuration time. It can
be used to programmatically supply converters. It is merged
with the converters dictionary, if supplied. Optional.

	absorb – If set to True, matches any subpath that
matches this path as well. This is passed into the decorated
function as the remaining variable.














	
@permission_rule(model, permission, identity=<class 'morepath.security.Identity'>)

	Declare whether a model has a permission.

The decorated function receives model, permission`
(instance of any permission object) and identity
(morepath.security.Identity) parameters. The
decorated function should return True only if the given
identity exists and has that permission on the model.





	Parameters:	
	model – the model class

	permission – permission class

	identity – identity class to check permission for. If None,
the identity to check for is the special
morepath.security.NO_IDENTITY.














	
@predicate(name, order, default, index=<class 'reg.predicate.KeyIndex'>)

	Register custom view predicate.

The decorated function gets model and request (a
morepath.Request object) parameters.

From this information it should calculate a predicate value
and return it. You can then pass these extra predicate
arguments to morepath.AppBase.view() and this view is
only found if the predicate matches.





	Parameters:	
	name – the name of the view predicate.

	order (int) – when this custom view predicate should be checked
compared to the others. A lower order means a higher importance.

	default – the default value for this view predicate.
This is used when the predicate is omitted or None when
supplied to the morepath.AppBase.view() directive.
This is also used when using Request.view() to render
a view.

	index – the predicate index to use. Default is
reg.KeyIndex [http://reg.readthedocs.org/en/latest/api.html#reg.KeyIndex] which matches by name.














	
@predicate_fallback(name)

	For a given predicate name, register fallback view.

The decorated function gets self and request parameters.

The fallback view is a view that gets called when the
named predicate does not match and no view has been registered
that can handle that case.





	Parameters:	name – the name of the predicate.










	
@setting(section, name)

	Register application setting.

An application setting is registered under the settings
attribute of morepath.app.AppBase. It will
be executed early in configuration so other configuration
directives can depend on the settings being there.

The decorated function returns the setting value when executed.





	Parameters:	
	section – the name of the section the setting should go
under.

	name – the name of the setting in its section.














	
@setting_section(section)

	Register application setting in a section.

An application settings are registered under the settings
attribute of morepath.app.AppBase. It will
be executed early in configuration so other configuration
directives can depend on the settings being there.

The decorated function returns a dictionary with as keys the
setting names and as values the settings.





	Parameters:	section – the name of the section the setting should go
under.










	
@tween_factory(under=None, over=None, name=None)

	Register tween factory.

The tween system allows the creation of lightweight middleware
for Morepath that is aware of the request and the application.

The decorated function is a tween factory. It should return a tween.
It gets two arguments: the app for which this tween is in use,
and another tween that this tween can wrap.

A tween is a function that takes a request and a mounted
application as arguments.

Tween factories can be set to be over or under each other to
control the order in which the produced tweens are wrapped.





	Parameters:	
	under – This tween factory produces a tween that wants to
be wrapped by the tween produced by the under tween factory.
Optional.

	over – This tween factory produces a tween that wants to
wrap the tween produced by the over tween factory. Optional.

	name – The name under which to register this tween factory,
so that it can be overridden by applications that extend this one.
If no name is supplied a default name is generated.














	
@verify_identity(identity=<type 'object'>)

	Verify claimed identity.

The decorated function gives a single identity argument which
contains the claimed identity. It should return True only if the
identity can be verified with the system.

This is particularly useful with identity policies such as
basic authentication and cookie-based authentication where the
identity information (username/password) is repeatedly sent to
the the server and needs to be verified.

For some identity policies (auth tkt, session) this can always
return True as the act of establishing the identity means
the identity is verified.

The default behavior is to always return False.





	Parameters:	identity – identity class to verify. Optional.










	
@view(model, render=None, permission=None, internal=False, **predicates)

	Register a view for a model.

The decorated function gets self (model instance) and
request (morepath.Request) parameters. The
function should return either a (unicode) string that is
the response body, or a morepath.Response object.

If a specific render function is given the output of the
function is passed to this first, and the function could
return whatever the render parameter expects as input.
morepath.render_json() for instance expects a Python
object such as a dict that can be serialized to JSON.

See also morepath.AppBase.json() and
morepath.AppBase.html().





	Parameters:	
	model – the class of the model for which this view is registered.
The self passed into the view function is an instance
of the model (or of a subclass).

	render – an optional function that can render the output of the
view function to a response, and possibly set headers such as
Content-Type, etc.

	permission – a permission class. The model should have this
permission, otherwise access to this view is forbidden. If omitted,
the view function is public.

	internal – Whether this view is internal only. If
True, the view is only useful programmatically using
morepath.Request.view(), but will not be published on
the web. It will be as if the view is not there.
By default a view is False, so not internal.

	name – the name of the view as it appears in the URL. If omitted,
it is the empty string, meaning the default view for the model.
This is a predicate.

	request_method – the request method to which this view should
answer, i.e. GET, POST, etc. If omitted, this view responds to
GET requests only. This is a predicate.

	predicates – predicates to match this view on. Use
morepath.ANY for a predicate if you don’t care what
the value is. If you don’t specify a predicate, the default
value is used. Standard predicate values are
name and request_method, but you can install your
own using the morepath.AppBase.predicate() directive.














	
clear()

	Clear all registrations in this application.






	
mounted(**context)

	Create morepath.mount.Mount for application.





	Parameters:	kw – the arguments with which to mount the app.


	Returns:	morepath.mount.Mount instance. This is
a WSGI application.










	
request(environ)

	Create a Request given WSGI environment.





	Parameters:	environ – WSGI environment


	Returns:	morepath.Request instance










	
lookup

	Get the reg.Lookup [http://reg.readthedocs.org/en/latest/api.html#reg.Lookup] for this application.





	Returns:	a reg.Lookup [http://reg.readthedocs.org/en/latest/api.html#reg.Lookup] instance.














	
morepath.global_app = <morepath.App 'global_app'>

	The global app object.

Instance of AppBase.

This is the application object that the Morepath framework is
registered on. It’s automatically included in the extends of any
App` object.

You could add configuration to global_app but it is recommended
you don’t do so. Instead to extend or override the framework you can
create your own App with this additional configuration.






	
morepath.autoconfig(ignore=None)

	Automatically load Morepath configuration from packages.

Morepath configuration consists of decorator calls on App
instances, i.e. @app.view() and @app.path().

This function loads all needed Morepath configuration from all
packages automatically. These packages do need to be made
available using a setup.py file including currect
install_requires information so that they can be found using
setuptools [http://pythonhosted.org/setuptools/].

Creates a Config object as with setup(), but before
returning it scans all packages, looking for those that depend on
Morepath directly or indirectly. This includes the package that
calls this function. Those packages are then scanned for
configuration as with Config.scan().

You can add manual Config.scan() calls yourself on the
returned Config object. Finally you need to call
Config.commit() on the returned Config object so
the configuration is committed.

Typically called immediately after startup just before the
application starts serving using WSGI.

See also autosetup().





	Parameters:	ignore – Venusian [http://venusian.readthedocs.org] style ignore to ignore some modules
during scanning. Optional.


	Returns:	Config object.










	
morepath.autosetup(ignore=None)

	Automatically commit Morepath configuration from packages.

As with autoconfig(), but also commits
configuration. This can be your one-stop function to load all
Morepath configuration automatically.

Typically called immediately after startup just before the
application starts serving using WSGI.





	Parameters:	ignore – Venusian [http://venusian.readthedocs.org] style ignore to ignore some modules
during scanning. Optional.










	
morepath.setup()

	Set up core Morepath framework configuration.

Returns a Config object; you can then Config.scan()
the configuration of other packages you want to load and then
Config.commit() it.

See also autoconfig() and autosetup().





	Returns:	Config object.










	
morepath.run(wsgi, host=None, port=None)

	Uses wsgiref.simple_server to run application for debugging purposes.

Don’t use this in production; use an external WSGI server instead,
for instance Apache mod_wsgi, Nginx wsgi, Waitress, Gunicorn.





	Parameters:	
	wsgi – WSGI app.

	host – hostname.

	port – port.














	
morepath.settings(*args, **kw)

	Return current settings object.

In it are sections, and inside of the sections are the setting values.
If there is a logging section and a loglevel setting in it,
this is how you would access it:

settings().logging.loglevel










	
class morepath.Request(environ)

	Request.

Extends webob.request.BaseRequest [http://docs.webob.org/en/latest/modules/webob.html#webob.request.BaseRequest]


	
after(func)

	Call function with response after this request is done.

Can be used explicitly:

def myfunc(response):
    response.headers.add('blah', 'something')
request.after(my_func)





or as a decorator:

@request.after
def myfunc(response):
    response.headers.add('blah', 'something')









	Parameters:	func – callable that is called with response


	Returns:	func argument, not wrapped










	
child(app, **variables)

	Obj to call Request.link() or Request.view() on child.

Get an object that represents the application mounted in this app.
You can call link and view on it.






	
link(obj, name='', default=None)

	Create a link (URL) to a view on a model instance.

If no link can be constructed for the model instance, a
:exc:morepath.LinkError is raised. None is treated
specially: if None is passed in the default value is
returned.





	Parameters:	
	obj – the model instance to link to, or None.

	name – the name of the view to link to. If omitted, the
the default view is looked up.

	default – if None is passed in, the default value is
returned. By default this is None.














	
view(obj, default=None, **predicates)

	Call view for model instance.

This does not render the view, but calls the appropriate
view function and returns its result.





	Parameters:	
	obj – the model instance to call the view on.

	default – default value if view is not found.

	predicates – extra predicates to modify view
lookup, such as name and request_method. The default
name is empty, so the default view is looked up,
and the default request_method is GET. If you introduce
your own predicates you can specify your own default.














	
identity

	Self-proclaimed identity of the user.

The identity is established using the identity policy. Normally
this would be an instance of morepath.security.Identity.

If no identity is claimed or established, or if the identity
is not verified by the application, the identity is the the
special value morepath.security.NO_IDENTITY.

The identity can be used for authentication/authorization of
the user, using Morepath permission directives.






	
parent

	Obj to call Request.link() or Request.view() on parent.

Get an object that represents the parent app that this app is mounted
inside. You can call link and view on it.










	
class morepath.Response(body=None, status=None, headerlist=None, app_iter=None, content_type=None, conditional_response=None, **kw)

	Response.

Extends webob.response.Response [http://docs.webob.org/en/latest/modules/webob.html#webob.response.Response].






	
morepath.render_html(content)

	Take string and return text/html response.






	
morepath.render_json(content)

	Take dict/list/string/number content and return json response.






	
morepath.ANY = <ANY>

	




	
class morepath.security.Identity(userid, **kw)

	Claimed identity of a user.

Note that this identity is just a claim; to authenticate the user
and authorize them you need to implement Morepath permission directives.





	Parameters:	
	userid – The userid of this identity

	kw – Extra information to store in identity.










	
as_dict()

	Export identity as dictionary.

This includes the userid and the extra keyword parameters used
when the identity was created.





	Returns:	dict with identity info.














	
class morepath.security.BasicAuthIdentityPolicy(realm='Realm')

	Identity policy that uses HTTP Basic Authentication.

Note that this policy does not do any password validation. You’re
expected to do so using permission directives.


	
forget(response, request)

	Forget identity on response.

This causes the browser to issue a basic authentication
dialog.  Warning: for basic auth, the browser in fact does not
forget the information even if forget is called.





	Parameters:	
	response (morepath.Response) – response object on which to forget identity.

	request (morepath.Request) – request object.














	
identify(request)

	Establish claimed identity using request.





	Parameters:	request (morepath.Request.) – Request to extract identity information from.


	Returns:	morepath.security.Identity instance.










	
remember(response, request, identity)

	Remember identity on response.

This is a no-op for basic auth, as the browser re-identifies
upon each request in that case.





	Parameters:	
	response (morepath.Response) – response object on which to store identity.

	request (morepath.Request) – request object.

	identity (morepath.security.Identity) – identity to remember.


















	
morepath.security.NO_IDENTITY = <morepath.security.NoIdentity object at 0x7fb4cdc91690>

	




	
class morepath.Converter(decode, encode=None)

	How to decode from strings to objects and back.

Only used for decoding for a list with a single value, will
error if more or less than one value is entered.

Used for decoding/encoding URL parameters and path parameters.

Create new converter.





	Parameters:	
	decode – function that given string can decode them into objects.

	encode – function that given objects can encode them into
strings.














	
class morepath.Config

	Contains and executes configuration actions.

Morepath configuration actions consist of decorator calls on
App instances, i.e. @app.view() and
@app.path(). The Config object can scan these configuration
actions in a package. Once all required configuration is scanned,
the configuration can be committed. The configuration is then
processed, associated with morepath.config.Configurable
objects (i.e. App objects), conflicts are detected,
overrides applied, and the configuration becomes final.

Once the configuration is committed all configured Morepath
App objects are ready to be served using WSGI.

See setup(), which creates an instance with standard
Morepath framework configuration. See also autoconfig() and
autosetup() which help automatically load configuration from
dependencies.


	
action(action, obj)

	Register an action and obj with this config.

This is normally not invoked directly, instead is called
indirectly by scan().

A Morepath directive decorator is an action, and obj is the
function that was decorated.





	Param:	The Action to register.


	Obj:	The object to perform action on.










	
commit()

	Commit all configuration.


	Clears any previous configuration from all registered
morepath.config.Configurable objects.

	Prepares actions using prepared().

	Actions are grouped by type of action (action class).

	The action groups are executed in order of depends
between their action classes.

	Per action group, configuration conflicts are detected.

	Per action group, extending configuration is merged.

	Finally all configuration actions are performed, completing
the configuration process.



This method should be called only once during the lifetime of
a process, before the configuration is first used. After this
the configuration is considered to be fixed and cannot be
further modified. In tests this method can be executed
multiple times as it automatically clears the
configuration of its configurables first.






	
configurable(configurable)

	Register a configurable with this config.

This is normally not invoked directly, instead is called
indirectly by scan().

A App object is a configurable.





	Param:	The morepath.config.Configurable to register.










	
prepared()

	Get prepared actions before they are performed.

The preparation phase happens as the first stage of a commit.
This allows configuration actions to complete their
configuration, do error checking, or transform themselves into
different configuration actions.

This calls Action.prepare() on all registered configuration
actions.





	Returns:	An iterable of prepared action, obj combinations.










	
scan(package=None, ignore=None)

	Scan package for configuration actions (decorators).

Register any found configuration actions with this
object. This also includes finding any
morepath.config.Configurable objects.





	Parameters:	package – The Python module or package to scan. Optional; if left
empty case the calling package is scanned.


	Ignore:	A Venusian [http://venusian.readthedocs.org] style ignore to ignore some modules during
scanning. Optional.














	
class morepath.config.Configurable(extends=None, testing_config=None)

	Object to which configuration actions apply.

Actions can be added to a configurable.

Once all actions are added, the configurable is executed.
This checks for any conflicts between configurations and
the configurable is expanded with any configurations from its
extends list. Then the configurable is performed, meaning all
its actions are performed (to it).





	Parameters:	
	extends (list of configurables, single configurable.) – the configurables that this configurable extends. Optional.

	testing_config – We can pass a config object used during testing. This causes
the actions to be issued against the configurable directly
instead of waiting for Venusian scanning. This allows
the use of directive decorators in tests where scanning is
not an option. Optional, default no testing config.










	
action(action, obj)

	Register an action with configurable.

This is normally not invoked directly, instead is called
indirectly by Config.commit().





	Parameters:	
	action – The action to register with the configurable.

	obj – The object that this action is performed on.














	
action_classes()

	Get action classes sorted in dependency order.






	
action_extends(action_class)

	Get actions for action class in extends.






	
actions()

	Actions the configurable wants to register as it is scanned.

A configurable may want to register some actions as it is registered
with the config system.

Should return a sequence of action, obj tuples.






	
clear()

	Clear any previously registered actions.

This is normally not invoked directly, instead is called
indirectly by Config.commit().






	
execute()

	Execute actions for configurable.






	
group_actions()

	Group actions into Actions by class.










	
class morepath.config.Action(configurable)

	A configuration action.

A configuration action is performed on an object. Actions can
conflict with each other based on their identifier and
discriminators. Actions can override each other based on their
identifier.

Can be subclassed to implement concrete configuration actions.

Action classes can have a depends attribute, which is a list
of other action classes that need to be executed before this one
is. Actions which depend on another will be executed after those
actions are executed.

Initialize action.





	Parameters:	configurable – morepath.config.Configurable object
for which this action was configured.






	
clone(**kw)

	Make a clone of this action.

Keyword parameters can be used to override attributes in clone.

Used during preparation to create new fully prepared actions.






	
codeinfo()

	Info about where in the source code the action was invoked.

By default there is no code info.






	
discriminators(configurable)

	Returns a list of immutables to detect conflicts.





	Parameters:	configurable – morepath.config.Configurable object
for which this action is being executed.





Used for additional configuration conflict detection.






	
identifier(configurable)

	Returns an immutable that uniquely identifies this config.





	Parameters:	configurable – morepath.config.Configurable object
for which this action is being executed.





Used for overrides and conflict detection.






	
perform(configurable, obj)

	Register whatever is being configured with configurable.





	Parameters:	
	configurable – the morepath.config.Configurable
being configured.

	obj – the object that the action should be performed on.














	
prepare(obj)

	Prepare action for configuration.





	Parameters:	obj – The object that the action should be performed on.





Returns an iterable of prepared action, obj tuples.










	
class morepath.converter.ConverterRegistry

	A registry for converters.

Used to decode/encode URL parameters and path variables used
by the morepath.AppBase.path() directive.

Is aware of inheritance.


	
argument_and_explicit_converters(arguments, converters)

	Use explict converters unless none supplied, then use default args.






	
converter_for_explicit_or_type(c)

	Given a converter or a type, turn it into an explicit one.






	
converter_for_explicit_or_type_or_list(c)

	Given a converter or type or list, turn it into an explicit one.





	Parameters:	c – can either be a converter, or a type for which
a converter can be looked up, or a list with a converter or a type
in it.


	Returns:	a Converter instance.










	
converter_for_type(type)

	Get converter for type.

Is aware of inheritance; if nothing is registered for given
type it returns the converter registered for its base class.





	Parameters:	type – The type for which to look up the converter.


	Returns:	a morepath.Converter instance.










	
converter_for_value(v)

	Get converter for value.

Is aware of inheritance; if nothing is registered for type of
given value it returns the converter registered for its base class.





	Parameters:	value – The value for which to look up the converter.


	Returns:	a morepath.Converter instance.










	
explicit_converters(converters)

	Given converter dictionary, make everything in it explicit.

This means types have converters looked up for them, and
lists are turned into ListConverter.






	
register_converter(type, converter)

	Register a converter for type.





	Parameters:	
	type – the Python type for which to register
the converter.

	converter – a morepath.Converter instance.


















	
class morepath.Directive(configurable)

	An Action that can be used as a decorator.

Extends morepath.config.Action.

Base class for concrete Morepath directives such as @app.path(),
@app.view(), etc.

Can be used as a Python decorator.

Can also be used as a context manager for a Python with
statement. This can be used to provide defaults for the directives
used within the with statements context.

When used as a decorator this tracks where in the source code
the directive was used for the purposes of error reporting.

Initialize Directive.





	Parameters:	configurable – morepath.config.Configurable object
for which this action was configured.






	
codeinfo()

	Info about where in the source code the directive was invoked.










	
class morepath.directive(name)

	Register a new directive with Morepath.

Instantiate this class with the name of the configuration directive.
The instance is a decorator that can be applied to a subclass of
Directive. For example:

@directive('foo')
class FooDirective(Directive):
   ...





This needs to be executed before the directive is being used and
thus might introduce import dependency issues unlike normal Morepath
configuration, so beware!









          

      

      

    


    
         Copyright 2013-2014, Morepath developers.
      Created using Sphinx 1.2.2.
    

  

    
      Navigation

      
        	
          index

        	
          modules |

        	
          next |

        	
          previous |

        	Morepath 0.3 documentation 
 
      

    


    
      
          
            
  
Comparison with other Web Frameworks

We hear you ask:


There are a million Python web frameworks out there. How does
Morepath compare?



Pyramid Design Chocies

This document is a bit like the Design Defense Document [http://docs.pylonsproject.org/projects/pyramid/en/latest/designdefense.html]
of the Pyramid web framework. The Pyramid document makes for a very
interesting read if you’re interested in web framework design. More
web frameworks should do that.



If you’re already familiar with another web framework, it’s useful to
learn how Morepath is the same and how it is different, as that helps
you understand it faster. So we’ll try to go into some of this here.

Our ability to compare Morepath to other web frameworks is limited by
our familiarity with them, and also by their aforementioned large
quantity. But we’ll try. Feel free to pitch in new comparisons, or
tell us where we get it wrong!

You may also want to read the Design Notes document.


Overview

Morepath aims to be foundational. All web applications are
different. Some are simple. Some, like CMSes, are like frameworks
themselves. It’s likely that some of you will need to build your own
frameworky things on top of Morepath. Morepath doesn’t get in your
way. Morepath isn’t there to be hidden away under another framework
though - these extensions still look like Morepath. The orientation
towards being foundational makes Morepath more like Pyramid, or
perhaps Flask, than like Django.

Morepath aims to have a small core. It isn’t full stack; it’s a
microframework. It should be easy to pick up. This makes it similar to
other microframeworks like Flask or CherryPy, but different from
Django and Zope, which offer a lot of features.

Morepath is opinionated. There is only one way to do routing and one
way to do configuration. This makes it like a lot of web frameworks,
but unlike Pyramid, which takes more of a toolkit approach where a lot
of choices are made available.

Morepath is a routing framework, but it’s model-centric. Models have
URLs. This makes it like a URL traversal framework like Zope or Grok,
and also like Pyramid when traversal is in use. It makes it unlike
other routing frameworks like Django or Flask, which have less
awareness of models.

Paradoxically enough one thing Morepath is opinionated about is
flexibility, as that’s part of its mission to be a good foundation.
That’s what its configuration and generic function systems are all
about. Want to change behavior? You can override everything. Even core
behavior of Morepath can be changed by overriding its generic
functions. This makes Morepath like Zope, and especially like
Pyramid, but less like Django or Flask.




Routing


Collect 200 dollars

Do not directly go to the view. Go to the model first. Only then
go to the view. Do collect 200 dollars. Don’t go to jail [https://en.wikipedia.org/wiki/Monopoly_%28game%29].



Morepath is a routing web framework, like Django and Flask and a lot
of others. This is a common way to use Pyramid too (the other is
traversal). This is also called URL mapping or dispatching. Morepath
is to our knowledge, unique in that the routes don’t directly go to
views, but go through models first.

Morepath’s route syntax is very similar to Pyramid’s,
i.e. /hello/{name}. Flask is also similar. It’s unlike Django’s
regular expressions. Morepath works at a higher level than that
deliberately, as that makes it possible to disambiguate similar
routes.

This separation of model and view lookup helps in code organisation,
as it allows you to separate the code that organises the URL space
from the code that implements your actual views.




Linking

Because it routes to models, Morepath allows you to ask for the URL of
a model instance, like this:

request.link(mymodel)





That is an easier and less brittle way to make links than having to
name your routes explicitly. Morepath pushes link generation quite
far: it can construct links with paths and URL parameters
automatically.

Morepath shares the property of model-based links with traversal based
web frameworks like Zope and Grok, and also Pyramid in non-routing
traversal mode. Uniquely among them Morepath does route, not
traverse.

For more: Paths and Linking.




View lookup

Morepath uses a separate view lookup system. The name of the view is
determined from the last step of the path being routed to. With this URL
path for instance:

/document/edit





the /edit bit indicates the name of the view to look up for the
document model.

If no view step is supplied, the default view is looked up:

/document





This is like modern Zope works, and like how the Plone CMS works. It’s
also like Grok. It’s like Pyramid if it’s used with traversal instead
of routing. Overall there’s a strong Zope heritage going on, as all
these systems are derived from Zope in one way or another. Morepath is
unique in that it combines routing with view lookup.

This decoupling of views from models helps with expressivity, as it
lets you write reusable, generic views, and code organisation as
mentioned before.

For more: Views.




WSGI

Morepath is a WSGI [http://wsgi.readthedocs.org/en/latest/]-based framework, like Flask or Pyramid. It’s
natively WSGI, unlike Django, which while WSGI is supported also has
its own way of doing middleware.

A Morepath app is a standard WSGI app. You can plug it into a WSGI
compliant web server like Apache or Nginx or gunicorn. You can also
combine Morepath with WSGI components, such as for instance the
Fanstatic [http://www.fanstatic.org] static resource framework.




Permissions

Morepath has a permission framework built-in: it knows about
authentication and lets you plug in authenticators, you can protect
views with permissions and plug in code that tells Morepath what
permissions someone has for which models. It’s small but powerful in
what it lets you do.

This is unlike most other micro-frameworks like Flask, Bottle,
CherryPy or web.py. It’s like Zope, Grok and Pyramid, and has learned
from them, though Morepath’s system is more streamlined.

For more you can check out this blog entry [http://blog.startifact.com/posts/morepath-security.html]. (It will
be integrated in this documentation later).




Explicit request

Some frameworks, like Flask and Bottle, have a magic request
global that you can import. But request isn’t really a global, it’s a
variable, and in Morepath it’s a variable that’s passed into view
functions explicitly. This makes Morepath more similar to Pyramid or
Django.




Testability and Global state

Developers that care about writing code try to avoid global state, in
particular mutable global state, as it can make testing harder. If the
framework is required to be in a certain global state before the code
under test can be run, it becomes harder to test that code, as you
need to know first what global state to manipulate.

Globals can also be a problem when multiple threads try to write the
global at the same time. Web frameworks avoid this by using thread
locals. Confusingly enough these locals are globals, but they’re
isolated from other threads.

Morepath the framework does not require any global state. Of course
Morepath’s app are module globals, but they’re not used that way
once Morepath’s configuration is loaded and Morepath starts to handle
requests. Morepath’s framework code passes the app along as a variable
(or attribute of a variable, such as the request) just like everything
else.

Morepath is built on the Reg generic function library. Implementations
of generic functions can be plugged in separately per Morepath app:
each app is a registry. When you call a generic function Reg needs to
know what registry to use to look it up. You can make this completely
explicit by using a special lookup argument:

some_generic_function(doc, 3, lookup=app.lookup())





That’s all right in framework code, but doing that all the time is not
very pretty in application code. For convenience, Morepath therefore sets up the
current lookup implicitly as thread local state. Then you can
simply write this:

some_generic_function(doc, 3)





Flask is quite happy to use global state (with thread locals) to have
a request that you can import. Pyramid is generally careful to avoid
global state, but does allow using thread local state to get access to
the current registry in some cases.

Summary: Morepath does not require any global state, but allows the
current lookup to be set up as such for convenience.




No default database

Morepath has no default database integration. This is like Flask and
Bottle and Pyramid, but unlike Zope or Django, which have assumptions
about the database baked in (ZODB and Django ORM respectively).

You can plug in your own database, or even have no database at
all. You could use SQLAlchemy, or the ZODB. Morepath lets you treat
anything as models. We’re not against writing examples or extensions
that help you do this, though we haven’t done so yet. Contribute!




No template language

Some micro-frameworks like Flask and Bottle and web.py have template
languages built-in, some, like CherryPy and the Werkzeug toolkit,
don’t. Pyramid doesn’t have built-in support either, but has standard
plugins for the Chameleon and Mako template languages.

Morepath aims to be a good fit for modern, client-side web
applications written in JavaScript. So we’ve focused on making it easy
to send anything to the client, especially JSON. If templating is used
for such applications, it’s done on the client, in the web browser,
not on the server.

We’re planning on letting you plug in server-side template languages
as they’re sometimes useful, but we haven’t done so yet. Feel free to
contribute!

For now, you can plug in something yourself. CherryPy has a good document [http://cherrypy.readthedocs.org/en/latest/progguide/choosingtemplate.html]
on how to do that with CherryPy, and it’d look very similar with Morepath.




Code configuration

Most Python web frameworks don’t have an explicit code configuration
system. With “code configuration” I mean expressing things like “this
function handles this route”, “this view works for this model”, and
“this is the current authentication system”. It also includes
extension and overrides, such as “here is an additional route”, “use
this function to handle this route instead of what the core said”.

If a web framework doesn’t deal with code configuration explicitly, an
implicit code configuration tends to grow. There is one way to set up
routes, another way to declare models, another way to do generic
views, yet another way to configure the permission system, and so
on. Each system works differently and uses a different API. Config
files, metaclasses and import-time side effects may all be involved.

On top of this, if the framework want to allow reuse, extension and
overrides the APIs tends to grow even more distinct with specialised
use cases, or yet more new APIs are grown.

Django is an example where configuration gained lots of knobs and
buttons; another example is the original Zope.

Microframeworks aim for simplicity so don’t suffer from this so much,
though probably at the cost of some flexibility. You can still observe
this kind of evolution in Flask’s pluggable views subsystem, though,
for instance.

To deal with this problem in an explicit way the Zope project
pioneered a component configuration mechanism. By having a universal
mechanism in which code is configured, the configuration API becomes
general and allows extension and override in a general manner as
well. Zope uses XML files for this.

The Grok project tried to put a friendlier face on the rather verbose
configuration system of Zope. Pyramid refined Grok’s approach further.
It offers a range of options for configuration: explicit calls in
Python code, decorators, and an extension that uses Zope-style XML.

In order to do its decorator based configuration, the Pyramid project
created the Venusian [http://pypi.python.org/pypi/venusian] python library. This is in turn a reimagined
version of the Martian [http://pypi.python.org/pypi/martian] python library created by the Grok project.

Morepath has a new configuration system that is based around
decorators (using Venusian) attached to application objects. These
application objects can extend other ones. This way it supports a
range sophisticated extension and override use cases in a general way.




Components and Generic functions

The Zope project made the term “zope component architecture” (ZCA)
(in)famous in the Python world. Does it sound impressive, suggesting
flexibility and reusability? Or does it sound scary, overengineered,
RequestProcessorFactoryFactory-like? Are you intimidated by it? We
can’t blame you.

At its core the ZCA is really a system to add functionality to objects
from the outside, without having to change their classes. It helps
when you need to build extensible applications and reusable generic
functionality. Under the hood, it’s just a fancy registry that knows
about inheritance. Its a really powerful system to help build more
complicated applications and frameworks. It’s used by Zope, Grok and
Pyramid.

Morepath uses something else: a library called Reg [http://reg.readthedocs.org]. This is a new,
reimagined, streamlined implementation of the idea of the ZCA.

The underlying registration APIs of the ZCA is rather involved, with
quite a few special cases. Reg has a simpler, more general
registration API that is flexible enough to fulfill a range of use
cases.

Finally what makes the Zope component architecture rather involved to
use is its reliance on interfaces. An interface is a special kind of
object introduced by the Zope component architecture that is used to
describe the API of objects. It’s like an abstract base class.

If you want to look up things in a ZCA component registry the ZCA
requires you to look up an interface. This requires you to write
interfaces for everything you want to be able to look up. The
interface-based way to do lookups also looks rather odd to the average
Python developer: it’s not considered to be very Pythonic. To mitigate
the last problem Pyramid creates simple function-based APIs on top of
the underlying interfaces.

Morepath by using Reg does away with interfaces altogether – instead
it uses generic functions. The simple function-based APIs are what
is pluggable; there is no need to deal with interfaces anymore, but
the system retains the power. Morepath is simple functions all the way
down.







          

      

      

    


    
         Copyright 2013-2014, Morepath developers.
      Created using Sphinx 1.2.2.
    

  

    
      Navigation

      
        	
          index

        	
          modules |

        	
          next |

        	
          previous |

        	Morepath 0.3 documentation 
 
      

    


    
      
          
            
  
Design Notes

Some of the use cases that influenced Morepath’s design are documented
here.


Publish any model

It should be possible to publish any model object to the web on a
readable URL. This includes model objects that are retrieved from a
relational database and were created with a ORM.

Allowing individual models to be published on separate URLs avoids the
god object antipattern where all web operations are routed through a
single object. Instead each model, through view objects, can
handle model-specific requests and operations. This encourages a more
modular and reusable application design.




Routing

It should be easy to declare explicit routes to model. A route
consists of a routing pattern with zero or more variables. The
variables are used to identify the model, for instance using a
relational database query.

Having routes makes it easier to reason about the URL structure of an
application. Routes also make it easier to expose models that are
retrieved using a query or are constructed on the fly, without
imposing a specific structure on the models.




Traversal

It should be possible to associate routes with specific models in the
application, not just to the root. This way models with sub-paths to
sub-components can be made available as reuable components; an example
of this could be a container. If the model is published, its
sub-components are then exposed as well.

This allows for increased reuse of not just models but relationships
between models, and lets the developer publish nested structures that
cannot be specified using routing alone.




Linking

If a model is published, it should be possible to automatically
generate a link to a model instance in the form of a URL.

This way there is no need to construct URLs manually, and there is no
need to have to refer to routes explicitly in order to construct URLs.
The system knows which route to use and how to construct the
parameters that go into the route itself, given the model.

This is useful when creating RESTful web services (where hypermedia is
the engine of application state), or to construct rich client-side
applications that get all their URLs from the server from a REST-style
web service.




Model is web-agnostic

Model classes should not have to have any web knowledge; no particular
base classes are required, and no methods or attributes need to be
implemented in order to publish instances of that model to the web. In
case of an ORM, the ORM does not need to be reconfigured in order to
publish ORM-mapped classes to the web. Models do not receive any
request object and do not have to generate a response object.

Instead this knowledge is external to the models. Models should be
optimized for programmatic use in general.




View/model separation

View objects are responsible for translating the model to the web and
web operations to operations on the model. Views receive the request
object and generate the response object. This is again to avoid giving
the models knowledge about the web. This is a kind of model/view
separation where the view is the intermediary between the model and
the web.




Isolation between applications

The system allows multiple applications to be published at the same
time. Applications work in isolation from each other by default. For
instance, publishing a model on a URL does not affect another
application, and publishing a view for a model does not make that
view available in the other application.




Sharing between applications

In order to support reusable components, it should be possible to
explicitly break application isolation and make routes to models and
views globally available. Each application will share this information.

[Morepath in fact now allows more controlled sharing; only Morepath
itself is globally shared]




Models can be published once per application

Per application a model can be exposed on a single URL pattern. So,
the same instance could be published once per application, in a URL
structure optimal for each application.

Again this supports applications working in isolation - they may treat
database models differently than other applications do.




Linking to another application

It should be possible to construct URLs to models in the context of
another application, if this application is given explicitly during
link time.




Reusable components

It should be possible to define a base class (or interface) for a
model that automatically pulls in (globally registered) views and
sub-paths when you subclass from it. This lets a framework developer
define APIs that an application developer can implement. By doing so,
the application developer automatically gets a whole set of views for
their models.




Declarative

It should be possible to register the components in a declarative
way. This avoids spaghetti registration code, and also makes it
possible to more easily reason about registrations (for instance to do
overrides or detect conflicts).




Conflicts

If you try to do the same registration multiple times, the system
should fail explicitly, as otherwise this would lead to subtle errors.




Overrides

It should be possible to override one registration with another one.
This should either be an explicit operation, or the result of
overriding in a different registry that has precedence over the
defaults.







          

      

      

    


    
         Copyright 2013-2014, Morepath developers.
      Created using Sphinx 1.2.2.
    

  

    
      Navigation

      
        	
          index

        	
          modules |

        	
          next |

        	
          previous |

        	Morepath 0.3 documentation 
 
      

    


    
      
          
            
  
Developing Morepath


Install Morepath for development

First make sure you have virtualenv [https://pypi.python.org/pypi/virtualenv] installed for Python 2.7.

Now create a new virtualenv somewhere for Morepath development:

$ virtualenv /path/to/ve_morepath





You should also be able to recycle an existing virtualenv, but this
guarantees a clean one. Note that we skip activating the environment
here, as this is just needed to initially bootstrap the Morepath
buildout.

Clone Morepath from github and go to the morepath directory:

$ git clone git@github.com:morepath/morepath.git
$ cd morepath





Now we need to run bootstrap.py to set up buildout, using the Python from the
virtualenv we’ve created before:

$ python /path/to/ve_morepath/bin/python/bootstrap.py





This installs buildout, which can now set up the rest of the development
environment:

$ bin/buildout





This downloads and installs various dependencies and tools. The
commands you run in bin are all restricted to the virtualenv you
set up before. There is therefore no need to refer to the virtualenv
once you have the development environment going.




Running the tests

You can run the tests using py.test [http://pytest.org/latest/]. Buildout has installed it for
you in the bin subdirectory of your project:

$ bin/py.test morepath





To generate test coverage information as HTML do:

$ bin/py.test morepath --cov morepath --cov-report html





You can then point your web browser to the htmlcov/index.html file
in the project directory and click on modules to see detailed coverage
information.




flake8

The buildout also installs flake8 [https://pypi.python.org/pypi/flake8], which is a tool that
can do various checks for common Python mistakes using pyflakes [https://pypi.python.org/pypi/pyflakes] and
checks for PEP8 [http://www.python.org/dev/peps/pep-0008/] style compliance.

To do pyflakes and pep8 checking do:

$ bin/flake8 morepath








radon

The buildout installs radon [https://radon.readthedocs.org/en/latest/commandline.html]. This is a tool that can check various
measures of code complexity.

To check for cyclomatic complexity [https://en.wikipedia.org/wiki/Cyclomatic_complexity] (excluding the tests):

$ bin/radon cc morepath -e "morepath/tests*"





To filter for anything not ranked A:

$ bin/radon cc morepath --min B -e "morepath/tests*"





And to see the maintainability index:

$ bin/radon mi morepath -e "morepath/tests*"











          

      

      

    


    
         Copyright 2013-2014, Morepath developers.
      Created using Sphinx 1.2.2.
    

  

    
      Navigation

      
        	
          index

        	
          modules |

        	
          next |

        	
          previous |

        	Morepath 0.3 documentation 
 
      

    


    
      
          
            
  
CHANGES


0.3 (2014-06-23)


	Ability to absorb paths entirely in path directive, as per issue #132.



	Refactor of config engine to make Venusian and immediate config more
clear.



	Typo fix in docs (Remco Wendt).



	Get version number in docs from setuptools.



	Fix changelog so that PyPI page generates HTML correctly.



	Fix PDF generation so that the full content is generated.



	Ability to mark a view as internal. It will be available to
request.view() but will give 404 on the web. This is useful for
structuring JSON views for reusability where you don’t want them to
actually show up on the web.



	A request.child(something).view() that had this view in turn
call a request.view() from the context of the something
application would fail – it would not be able to look up the view
as lookups still occurred in the context of the mounting
application. This is now fixed. (thanks Ying Zhong for reporting it)

Along with this fix refactored the request object so it keeps a
simple mounted attribute instead of a stack of mounts; the
stack-like nature was not in use anymore as mounts themselves have
parents anyway. The new code is simpler.








0.2 (2014-04-24)


	Python 3 support, in particular Python 3.4 (Alec Munro - fudomunro
on github).

	Link generation now takes SCRIPT_NAME into account.

	Morepath 0.1 had a security system, but it was undocumented. Now
it’s documented (docs now in Morepath Security [http://blog.startifact.com/posts/morepath-security.html]), and some of its behavior was
slightly tweaked:
	new verify_identity directive.

	permission directive was renamed to permission_rule.

	default unauthorized error is 403 Forbidden, not 401 Unauthorized.

	morepath.remember and morepath.forbet renamed to
morepath.remember_identity and morepath.forget_identity.





	Installation documentation tweaks. (Auke Willem Oosterhoff)

	.gitignore tweaks (Auke Willem Oosterhoff)






0.1 (2014-04-08)


	Initial public release.









          

      

      

    


    
         Copyright 2013-2014, Morepath developers.
      Created using Sphinx 1.2.2.
    

  

    
      Navigation

      
        	
          index

        	
          modules |

        	
          previous |

        	Morepath 0.3 documentation 
 
      

    


    
      
          
            
  
History of Morepath

For more recent changes, see CHANGES.

Morepath was written by Martijn Faassen (me writing this document).

The genesis of Morepath is complex and involves a number of projects.


Web Framework Inspirations

Morepath was inspired by Zope, in particular its component
architecture; a reimagined version of this is available in Reg, a core
dependency of Morepath.

An additional inspiration was the Grok web framework I helped create,
which was based on Zope 3 technologies, and Pyramid, a reimagined
version of Zope 3, created by Chris McDonough.

Pyramid in particular has been the source of a lot of ideas, including
bits of implementation.

Once the core of Morepath had been created I found there had been
quite a bit of parallel evolution with Flask. Flask served as a later
inspiration in its capabilities and documentation. Morepath also used
Werkzeug (basis for Flask) for a while to implement its request and
response objects, but eventually I found WebOb the better fit for
Morepath and switched to that.




Configuration system

In 2006 I co-founded the Grok web framework. The fundamental
configuration mechanism this project uses was distilled into the
Martian library:

https://pypi.python.org/pypi/martian

Martian was reformulated by Chris McDonough (founder of the Pyramid
project) into Venusian, a simpler, decorator based approach:

https://pypi.python.org/pypi/venusian

Now Morepath uses Venusian as a foundation to its configuration system.




Routing system

In 2009 I wrote a library called Traject:

https://pypi.python.org/pypi/traject

I was familiar with Zope traversal. Zope traversal matches a URL with
an object by parsing the URL and going through an object graph step by
step to find the matching object. This works well for objects stored
in an object database, as they’re already in such a graph. I tried to
make this work properly with a relational database exposed through an
ORM, but noticed that I had to adjust the object mapping too much just
to please the traversal system.

This led me to a routing system, so expose the relational database
objects to a URL. But I didn’t want to give up some nice properties of
traversal, in particular that for any object that you can traverse to
you can also generate a URL. I also wanted to maintain a separation
between models and views. This led to the creation of Traject.

I used Traject successfully in a number of projects (based on Grok). I
also ported Traject to JavaScript as part of the Obviel client-side
framework. While Traject is fairly web-framework independent, to my
knowledge Traject hasn’t found much adoption elsewhere.

Morepath contains a further evolution of the Traject concept (though
not the Traject library directly).




Reg

In early 2010 I started the iface project with Thomas Lotze. In 2012 I
started the Crom project. Finally I combined them into the Comparch
project in 2013. I then renamed Comparch to Reg, and finally
converted Reg to a generic function implementation [http://blog.startifact.com/posts/reg-now-with-more-generic.html].

See Reg’s history section [http://reg.readthedocs.org/en/latest/history.html] for more information on its history. The
Reg project provides the fundamental registries that Morepath builds
on.




Publisher

In 2010 I wrote a system called Dawnlight:

https://bitbucket.org/faassen/dawnlight

It was the core of an object publishing system with a system to find a
model and a view for that model, based on a path. It used some
concepts I’d learned while implementing Traject (a URL path can be
seen as a stack that’s being consumed), and it was intended to be easy
to plug in Traject. I didn’t use Dawnlight myself, but it was adopted
by the developers of the Cromlech web framework (Souheil Chelfouh and
Alex Garel):

http://pypi.dolmen-project.org/pypi/cromlech.dawnlight

Morepath contains a reformulation of the Dawnlight system,
particularly in its publisher module.




Combining it all

In 2013 I started to work with CONTACT Software. They encouraged me to
rethink these various topics. This led me to combine these lines of
development into Morepath: Reg registries, decorator-based
configuration using Venusian, and traject-style publication of models
and resources.







          

      

      

    


    
         Copyright 2013-2014, Morepath developers.
      Created using Sphinx 1.2.2.
    

  

    
      Navigation

      
        	
          index

        	
          modules |

        	Morepath 0.3 documentation 
 
      

    


    
      
          
            

   Python Module Index


   
   m
   


   
     			

     		
       m	

     
       	
       	
       morepath	
       

   



          

      

      

    


    
         Copyright 2013-2014, Morepath developers.
      Created using Sphinx 1.2.2.
    

  

    
      Navigation

      
        	
          index

        	
          modules |

        	Morepath 0.3 documentation 
 
      

    


    
      
          
            

Index



 A
 | B
 | C
 | D
 | E
 | F
 | G
 | I
 | L
 | M
 | N
 | P
 | R
 | S
 | V
 


A


  	
      
  	Action (class in morepath.config)
  


      
  	action() (morepath.Config method)
  


      	
        
  	(morepath.config.Configurable method)
  


      


      
  	action_classes() (morepath.config.Configurable method)
  


      
  	action_extends() (morepath.config.Configurable method)
  


      
  	actions() (morepath.config.Configurable method)
  


      
  	after() (morepath.Request method)
  


      
  	ANY (in module morepath)
  


      
  	App (class in morepath)
  


      
  	AppBase (class in morepath)
  


      
  	AppBase.converter() (in module morepath)
  


      
  	AppBase.function() (in module morepath)
  


      
  	AppBase.html() (in module morepath)
  


      
  	AppBase.identity_policy() (in module morepath)
  


      
  	AppBase.json() (in module morepath)
  


  

  	
      
  	AppBase.mount() (in module morepath)
  


      
  	AppBase.path() (in module morepath)
  


      
  	AppBase.permission_rule() (in module morepath)
  


      
  	AppBase.predicate() (in module morepath)
  


      
  	AppBase.predicate_fallback() (in module morepath)
  


      
  	AppBase.setting() (in module morepath)
  


      
  	AppBase.setting_section() (in module morepath)
  


      
  	AppBase.tween_factory() (in module morepath)
  


      
  	AppBase.verify_identity() (in module morepath)
  


      
  	AppBase.view() (in module morepath)
  


      
  	argument_and_explicit_converters() (morepath.converter.ConverterRegistry method)
  


      
  	as_dict() (morepath.security.Identity method)
  


      
  	autoconfig() (in module morepath)
  


      
  	autosetup() (in module morepath)
  


  





B


  	
      
  	BasicAuthIdentityPolicy (class in morepath.security)
  


  





C


  	
      
  	child() (morepath.Request method)
  


      
  	clear() (morepath.AppBase method)
  


      	
        
  	(morepath.config.Configurable method)
  


      


      
  	clone() (morepath.config.Action method)
  


      
  	codeinfo() (morepath.config.Action method)
  


      	
        
  	(morepath.Directive method)
  


      


      
  	commit() (morepath.Config method)
  


      
  	Config (class in morepath)
  


      
  	Configurable (class in morepath.config)
  


  

  	
      
  	configurable() (morepath.Config method)
  


      
  	Converter (class in morepath)
  


      
  	converter_for_explicit_or_type() (morepath.converter.ConverterRegistry method)
  


      
  	converter_for_explicit_or_type_or_list() (morepath.converter.ConverterRegistry method)
  


      
  	converter_for_type() (morepath.converter.ConverterRegistry method)
  


      
  	converter_for_value() (morepath.converter.ConverterRegistry method)
  


      
  	ConverterRegistry (class in morepath.converter)
  


  





D


  	
      
  	Directive (class in morepath)
  


      
  	directive (class in morepath)
  


  

  	
      
  	discriminators() (morepath.config.Action method)
  


  





E


  	
      
  	execute() (morepath.config.Configurable method)
  


  

  	
      
  	explicit_converters() (morepath.converter.ConverterRegistry method)
  


  





F


  	
      
  	forget() (morepath.security.BasicAuthIdentityPolicy method)
  


  





G


  	
      
  	global_app (in module morepath)
  


  

  	
      
  	group_actions() (morepath.config.Configurable method)
  


  





I


  	
      
  	identifier() (morepath.config.Action method)
  


      
  	identify() (morepath.security.BasicAuthIdentityPolicy method)
  


  

  	
      
  	Identity (class in morepath.security)
  


      
  	identity (morepath.Request attribute)
  


  





L


  	
      
  	link() (morepath.Request method)
  


  

  	
      
  	lookup (morepath.AppBase attribute)
  


  





M


  	
      
  	morepath (module)
  


  

  	
      
  	mounted() (morepath.AppBase method)
  


  





N


  	
      
  	NO_IDENTITY (in module morepath.security)
  


  





P


  	
      
  	parent (morepath.Request attribute)
  


      
  	perform() (morepath.config.Action method)
  


  

  	
      
  	prepare() (morepath.config.Action method)
  


      
  	prepared() (morepath.Config method)
  


  





R


  	
      
  	register_converter() (morepath.converter.ConverterRegistry method)
  


      
  	remember() (morepath.security.BasicAuthIdentityPolicy method)
  


      
  	render_html() (in module morepath)
  


      
  	render_json() (in module morepath)
  


  

  	
      
  	Request (class in morepath)
  


      
  	request() (morepath.AppBase method)
  


      
  	Response (class in morepath)
  


      
  	run() (in module morepath)
  


  





S


  	
      
  	scan() (morepath.Config method)
  


      
  	settings() (in module morepath)
  


  

  	
      
  	setup() (in module morepath)
  


  





V


  	
      
  	view() (morepath.Request method)
  


  







          

      

      

    


    
         Copyright 2013-2014, Morepath developers.
      Created using Sphinx 1.2.2.
    

  _static/up.png





_static/plus.png





_static/up-pressed.png





_static/down-pressed.png





_static/comment-bright.png





_static/file.png





_static/down.png





_static/ajax-loader.gif





search.html


    
      Navigation


      
        		
          index


        		
          modules |


        		Morepath 0.3 documentation »

 
      


    


    
      
          
            
  Search


  
  
  
    Please activate JavaScript to enable the search
    functionality.
  


  

  
    From here you can search these documents. Enter your search
    words into the box below and click "search". Note that the search
    function will automatically search for all of the words. Pages
    containing fewer words won't appear in the result list.
  


  
    
    
    
  

  
  
  
  


          

      

      

    


    
        © Copyright 2013-2014, Morepath developers.
      Created using Sphinx 1.2.2.
    

  

_static/comment.png





_static/minus.png





_static/comment-close.png





