
Morepath Documentation
Release 0.13.2

Morepath developers

April 13, 2016

Contents

1 Table of Contents 1
1.1 Morepath: Super Powered Python Web Framework . 1
1.2 Quickstart . 2
1.3 Community . 8
1.4 Installation . 9
1.5 Superpowers . 12
1.6 A Review of the Web . 15
1.7 Paths and Linking . 24
1.8 Views . 36
1.9 Templates . 44
1.10 Configuration . 47
1.11 JSON and objects . 51
1.12 Security . 52
1.13 REST . 56
1.14 Settings . 61
1.15 Organizing your Project . 63
1.16 Directive tricks . 69
1.17 Logging . 71
1.18 App Reuse . 71
1.19 Building Large Applications . 76
1.20 Tweens . 84
1.21 Static resources with Morepath . 86
1.22 API . 90
1.23 Comparison with other Web Frameworks . 105
1.24 Design Notes . 110
1.25 Developing Morepath . 112
1.26 CHANGES . 113
1.27 History of Morepath . 127

2 Indices and tables 131

Python Module Index 133

i

ii

CHAPTER 1

Table of Contents

1.1 Morepath: Super Powered Python Web Framework

Morepath is a Python web microframework, with super powers.

Morepath is a Python WSGI microframework. It uses routing, but the routing is to models. Morepath is model-driven
and flexible, which makes it expressive.

• Morepath does not get in your way.

• It lets you express what you want with ease. See Quickstart.

• It’s extensible, with a simple, coherent and universal extension and override mechanism, supporting reusable
code. See App Reuse.

• It understands about generating hyperlinks. The web is about hyperlinks and Morepath actually knows about
them. See Paths and Linking.

• Views are simple functions. All views are generic. See Views.

• It has all the tools to develop REST web services in the box. See REST.

• Documentation is important. Morepath has a lot of Documentation.

Sounds interesting?

Walk the Morepath with us!

1.1.1 Video intro

Here is a 25 minute introduction to Morepath, originally given at EuroPython 2014:

1.1.2 Morepath Super Powers

• Automatic hyperlinks that don’t break.

• Creating generic UIs is as easy as subclassing.

• Simple, flexible, powerful permissions.

• Reuse views in views.

• Extensible apps. Nestable apps. Override apps, even override Morepath itself!

• Extensible framework. Morepath itself can be extended, and your extensions behave exactly like core extensions.

1

Morepath Documentation, Release 0.13.2

Curious how Morepath compares with other Python web frameworks? See Comparison with other Web Frameworks.

1.1.3 Morepath Knows About Your Models

import morepath

class App(morepath.App):
pass

class Document(object):
def __init__(self, id):

self.id = id

@App.path(path='')
class Root(object):

pass

@App.path(path='documents/{id}', model=Document)
def get_document(id):

return Document(id) # query for doc

@App.html(model=Root)
def hello_root(self, request):

return 'Go to doc' % request.link(Document('foo'))

@App.html(model=Document)
def hello_doc(self, request):

return '<p>Hello document: %s!</p>' % self.id

if __name__ == '__main__':
morepath.autocommit()
morepath.run(App())

Want to know what’s going on? Check out the Quickstart!

1.1.4 More documentation, please!

• Read the documentation

If you have questions, please join the #morepath IRC channel on freenode. Hope to see you there!

1.2 Quickstart

Morepath is a micro-framework, and this makes it small and easy to learn. This quickstart guide should help you get
started. We assume you’ve already installed Morepath; if not, see the Installation section.

1.2.1 Hello world

Let’s look at a minimal “Hello world!” application in Morepath:

import morepath

class App(morepath.App):

2 Chapter 1. Table of Contents

Morepath Documentation, Release 0.13.2

pass

@App.path(path='')
class Root(object):

pass

@App.view(model=Root)
def hello_world(self, request):

return "Hello world!"

if __name__ == '__main__':
morepath.autocommit()
morepath.run(App())

You can save this as hello.py and then run it with Python:

$ python hello.py
Running <morepath.App 'Hello'> with wsgiref.simple_server on http://127.0.0.1:5000

Making the server externally accessible

The default configuration of morepath.run() uses the 127.0.0.1 hostname. This means you can access
the web server from your own computer, but not from anywhere else. During development this is often the best
way to go about things.
But sometimes do want to make the development server accessible from the outside world. This can be done by
passing an explicit host argument of 0.0.0.0 to the morepath.run() function.

morepath.run(App(), host=‘0.0.0.0’)
Note that the built-in web server is absolutely unsuitable for actual deployment. For those cases don’t use
morepath.run() at all, but instead use an external WSGI server such as waitress, Apache mod_wsgi or
nginx mod_wsgi.

If you now go with a web browser to the URL given, you should see “Hello world!” as expected. When you want to
stop the server, just press control-C.

This application is a bit bigger than you might be used to in other web micro-frameworks. That’s for a reason:
Morepath is not geared to create the most succinct “Hello world!” application but to be effective for building slightly
larger applications, all the way up to huge ones.

Let’s go through the hello world app step by step to gain a better understanding.

1.2.2 Code Walkthrough

1. We import morepath.

2. We create a subclass of morepath.App named App. This class contains our application’s configuration: what
models and views are available. It can also be instantiated into a WSGI application object.

3. We then set up a Root class. Morepath is model-driven and in order to create any views, we first need at least
one model, in this case the empty Root class.

We set up the model as the root of the website (the empty string ’’ indicates the root, but ’/’ works too) using
the morepath.App.path() decorator.

4. Now we can create the “Hello world” view. It’s just a function that takes self and request as arguments
(we don’t need to use either in this case), and returns the string "Hello world!". The self argument is
the instance of the model class that is being viewed.

1.2. Quickstart 3

http://pylons.readthedocs.org/projects/waitress/en/latest/
https://modwsgi.readthedocs.org/en/latest/
http://wiki.nginx.org/NgxWSGIModule

Morepath Documentation, Release 0.13.2

We then need to hook up this view with the morepath.App.view() decorator. We say it’s associated with
the Root model. Since we supply no explicit name to the decorator, the function is the default view for the
Root model on /.

5. The if __name__ == ’__main__’ section is a way in Python to make the code only run if the
hello.py module is started directly with Python as discussed above. In a real-world application you instead
use a setuptools entry point so that a startup script for your application is created automatically.

6. morepath.autocommit() commits all directives for all morepath.App subclasses in the application, in
this case App. Anything you imported, directly or indirectly, is committed.

This step ensures your configuration (model routes, views, etc) is loaded exactly once in a way that’s reusable
and extensible.

If you have package dependencies you want to import recursively automatically, you can use
morepath.scan() before you call autocommit. For instance, if you want to use the Morepath exten-
sion more.static, you

import more.static

...
morepath.scan(more.static)
morepath.autocommit()

If your app is in a Python package and you’ve set up the right install_requires in setup.py, con-
sider using morepath.autoscan() or morepath.autosetup() so all dependencies also get set up
automatically. See Configuration for more detail. See Organizing your Project for more information.

8. We then instantiate the App class to create a WSGI app using the default web server. Since you create a WSGI
app you can also plug it into any other WSGI server.

This example presents a compact way to organize your code in a single module, but for a real project we recommend
you read Organizing your Project. This supports organizing your project with multiple modules.

1.2.3 Routing

Morepath uses a special routing technique that is different from many other routing frameworks you may be familiar
with. Morepath does not route to views, but routes to models instead.

Why route to models?

Why does Morepath route to models? It allows for some nice features. The most concrete feature is automatic
hyperlink generation - we’ll go into more detail about this later.
A more abstract feature is that Morepath through model-driven design allows for greater code reuse: this is the
basis for Morepath’s super-powers. We’ll show a few of these special things you can do with Morepath later.
Finally Morepath’s model-oriented nature makes it a more natural fit for REST applications. This is useful when
you need to create a web service or the foundation to a rich client-side application.

Models

A model is any Python object that represents the content of your application: say a document, or a user, an address,
and so on. A model may be a plain in-memory Python object or be backed by a database using an ORM such as
SQLAlchemy, or some NoSQL database such as the ZODB. This is entirely up to you; Morepath does not put special
requirements on models.

4 Chapter 1. Table of Contents

https://en.wikipedia.org/wiki/Representational_state_transfer
http://www.sqlalchemy.org/
http://www.zodb.org/en/latest/

Morepath Documentation, Release 0.13.2

Above we’ve exposed a Root model to the root route /, which is rather boring. To make things more interesting, let’s
imagine we have an application to manage users. Here’s our User class:

class User(object):
def __init__(self, username, fullname, email):

self.username = username
self.fullname = fullname
self.email = email

We also create a simple users database:

users = {}
def add_user(user):

users[user.username] = user

faassen = User('faassen', 'Martijn Faassen', 'faassen@startifact.com')
bob = User('bob', 'Bob Bobsled', 'bob@example.com')
add_user(faassen)
add_user(bob)

Publishing models

Custom variables function

The default behavior is for Morepath to retrieve the variables by name using getattr from the model ob-
jects. This only works if those variables exist on the model under that name. If not, you can supply a custom
variables function that given the model returns a dictionary with all the variables in it. Here’s how:

@App.path(model=User, path='/users/{username}',
variables=lambda model: dict(username=model.username))

def get_user(username):
return users.get(username)

Of course this variables is not necessary as it has the same behavior as the default, but you can do whatever
you want in the variables function in order to get the username.
Getting variables right is important for link generation.

We want our application to have URLs that look like this:

/users/faassen

/users/bob

Here’s the code to expose our users database to such a URL:

@App.path(model=User, path='/users/{username}')
def get_user(username):

return users.get(username)

The get_user function gets a user model from the users database by using the dictionary get method. If the user
doesn’t exist, it returns None. We could’ve fitted a SQLAlchemy query in here instead.

Now let’s look at the decorator. The model argument has the class of the model that we’re putting on the web. The
path argument has the URL path under which it should appear.

The path can have variables in it which are between curly braces ({ and }). These variables become arguments to the
function being decorated. Any arguments the function has that are not in the path are interpreted as URL parameters.

1.2. Quickstart 5

Morepath Documentation, Release 0.13.2

What if the user doesn’t exist? We want the end-user to see a 404 error. Morepath does this automatically for you
when you return None for a model, which is what get_user does when the model cannot be found.

Now we’ve published the model to the web but we can’t view it yet.

converters

A common use case is for path variables to be a database id. These are often integers only. If a non-integer is
seen in the path we know it doesn’t match. You can specify a path variable contains an integer using the integer
converter. For instance:

@App.path(model=Post, path='posts/{post_id}', converters=dict(post_id=int))
def get_post(post_id):

return query_post(post_id)

You can do this more succinctly too by using a default parameter for post_id that is an int, for instance:

@App.path(model=Post, path='posts/{post_id}')
def get_post(post_id=0):

return query_post(post_id)

For more on this, see Paths and Linking.

Views

In order to actually see a web page for a user model, we need to create a view for it:

@App.view(model=User)
def user_info(self, request):

return "User's full name is: %s" % self.fullname

The view is a function decorated by morepath.App.view() (or related decorators such as
morepath.App.json() and morepath.App.html()) that gets two arguments: self, which is the
model that this view is working for, so in this case an instance of User, and request which is the current request.
request is a morepath.request.Request object (a subclass of webob.request.BaseRequest).

Now the URLs listed above such as /users/faassen will work.

What if we want to provide an alternative view for the user, such as an edit view which allows us to edit it? We need
to give it a name:

@App.view(model=User, name='edit')
def edit_user(self, request):

return "An editing UI goes here"

Now we have functionality on URLs like /users/faassen/edit and /users/bob/edit.

For more on this, see Views.

Linking to models

Morepath is great at creating links to models: it can do it for you automatically. Previously we’ve defined an instance
of User called bob. What now if we want to link to the default view of bob? We simply do this:

request.link(bob)

which generates the path /users/bob for us.

6 Chapter 1. Table of Contents

http://docs.webob.org/en/latest/api/request.html#webob.request.BaseRequest

Morepath Documentation, Release 0.13.2

What if we want to see Bob’s edit view? We do this:

request.link(bob, 'edit')

And we get /users/bob/edit (with the hostname, for instance http://example.com, as a prefix).

Using morepath.Request.link() everywhere for link generation is easy. You only need models and remember
which view names are available, that’s it. If you ever have to change the path of your model, you won’t need to adjust
any linking code.

For more on this, see Paths and Linking.

Link generation compared

If you’re familiar with routing frameworks where links are generated to views (such as Flask or Django) link
generation is more involved. You need to give each route a name, and then refer back to this route name when
you want to generate a link. You also need to supply the variables that go into the route. With Morepath, you
don’t need a route name, and if the default way of getting variables from a model is not correct, you only need
to explain once how to create the variables for a route, with the variables argument to @App.path.
In addition, Morepath links are completely generic: you can pass in anything linkable. This means that writing a
generic view that uses links becomes easier – there is no dependency on particular named URL paths anymore.

JSON and HTML views

@App.view is rather bare-bones. You usually know more about what you want to return than that. If you want to
return JSON, you can use the shortcut @App.json instead to declare your view:

@App.json(model=User, name='info')
def user_json_info(self, request):

return {'username': self.username,
'fullname': self.fullname,
'email': self.email}

This automatically serializes what is returned from the function JSON, and sets the content-type header to
application/json.

If we want to return HTML, we can use @App.html:

@App.html(model=User)
def user_info(self, request):

return "<p>User's full name is: %s</p>" % self.fullname

This automatically sets the content type to text/html. It doesn’t do any HTML escaping though, so the use of %
above is unsafe! We recommend the use of a HTML template language in that case.

1.2.4 Request object

The first argument for a view function is the request object. We’ll give a quick overview of what’s possible here, but
consult the WebOb API documentation for more information.

• request.GET contains any URL parameters (?key=value). See
webob.request.BaseRequest.GET.

• request.POST contains any HTTP form data that was submitted. See
webob.request.BaseRequest.POST.

1.2. Quickstart 7

http://docs.webob.org/en/latest/api/request.html#webob.request.BaseRequest.GET
http://docs.webob.org/en/latest/api/request.html#webob.request.BaseRequest.POST

Morepath Documentation, Release 0.13.2

• request.method gets the HTTP method (GET, POST, etc). See
webob.request.BaseRequest.method.

• request.cookies contains the cookies. See webob.request.BaseRequest.cookies.
response.set_cookie can be used to set cookies. See webob.response.Response.set_cookie().

1.2.5 Redirects

To redirect to another URL, use morepath.redirect(). For example:

@App.view(model=User, name='extra')
def redirecting(self, request):

return morepath.redirect(request.link(self, 'other'))

1.2.6 HTTP Errors

To trigger an HTTP error response you can raise various WebOb HTTP exceptions (webob.exc). For instance:

from webob.exc import HTTPNotAcceptable

@App.view(model=User, name='extra')
def erroring(self, request):

raise HTTPNotAcceptable()

But note that Morepath already raises a lot of these errors for you automatically just by having your structure your
code the Morepath way.

1.3 Community

1.3.1 Mailing list/forum

There’s a mailing list/web forum for discussing Morepath. Discussion about use and development of Morepath are
both welcome:

https://groups.google.com/forum/#!forum/morepath

Feel free to speak up. Questions are very welcome!

1.3.2 #morepath on Freenode IRC

Want to chat with us? Join us on the #morepath channel on Freenode IRC.

If you don’t have an IRC client, an easy way to use Freenode is through its webchat feature.

1.3.3 Github

Morepath is maintained as a Github project:

https://github.com/morepath/morepath

Feel free to fork it and make pull requests!

We use the Github issue tracker for discussion about bugs and new features:

8 Chapter 1. Table of Contents

http://docs.webob.org/en/latest/api/request.html#webob.request.BaseRequest.method
http://docs.webob.org/en/latest/api/request.html#webob.request.BaseRequest.cookies
http://docs.webob.org/en/latest/api/response.html#webob.response.Response.set_cookie
http://docs.webob.org/en/latest/api/exceptions.html#module-webob.exc
https://groups.google.com/forum/#!forum/morepath
https://freenode.net/
https://webchat.freenode.net/
https://github.com/morepath/morepath

Morepath Documentation, Release 0.13.2

https://github.com/morepath/morepath/issues

So please report issues there. Feel free to add new issues!

1.4 Installation

1.4.1 Quick and Dirty Installation

To get started with Morepath right away, first create a Python 2.7 virtualenv:

$ virtualenv morepath_env
$ source morepath_env/bin/activate

Now install Morepath into it:

$ pip install morepath

You can now use the virtual env’s Python to run any code that uses Morepath:

$ python quickstart.py

See Quickstart for information on how to get started with Morepath itself, including an example of quickstart.py.

1.4.2 Creating a Morepath Project

When you develop a web application it’s a good idae to use standard Python project organization practices. Organizing
your Project has some recommendations on how to do this with Morepath. Relevant in particular is the contents of
setup.py, which depends on Morepath and also sets up an entry point to start the web server.

Once you have a project you can use tools like pip or buildout. We’ll briefly describe how to use both.

pip

With pip and a virtualenv called morepath_env, you can do this in your project’s root directory:

$ pip install --editable .

You can now run the application like this (if you called the console script myproject-start):

$ myproject-start

buildout

Buildout is more involved than pip, but can also do a lot more for you automatically and repeatedly.

Create a buildout.cfg file containing this:

[buildout]
develop = .
parts = scripts devpython
versions = versions

[versions]
venusian = 1.0a8

1.4. Installation 9

https://github.com/morepath/morepath/issues
http://www.virtualenv.org/
http://www.pip-installer.org/
http://www.buildout.org/

Morepath Documentation, Release 0.13.2

morepath = 0.1
reg = 0.6

[scripts]
recipe = zc.recipe.egg:scripts
eggs = myproject

pytest

[devpython]
recipe = zc.recipe.egg
interpreter = devpython
eggs = myproject

flake8

This describes how to install our project for development. Change myproject to the name your project has in
setup.py.

Place a buildout bootstrap.py in your project’s root directory.

The first time you create or check out a project you need to bootstrap the buildout. You can do this using the
bootstrap.py script. Do this from a virtualenv:

$ /path/to/morepath_env/bin/python bootstrap.py

You only need to do this once. After that you can run:

$ bin/buildout

each time you want to redo the installation after you change the buildout config. It’s safe to run this when nothing has
really changed too.

Once you’ve run buildout, you can start your application. If it’s named myproject-start in the entry point in
setup.py, you can run it like this:

$ bin/myproject-start

bin directory

Everything in bin will run in the virtualenv you’ve used to bootstrap your project automatically (or in a subset
thereof).

What’s going on with buildout?

What’s going on? What else did that buildout.cfg do for us?

The develop line tells which directories to look in for Python projects (with a setup.py). In this case only the
local project directory . is one. But if you also have the checkout of another project that you depend on (maybe a
development version of Morepath itself), you can add that directory to the develop section.

mr.developer

If you are going to develop such a multi-project codebase you should consider the buildout extension
mr.developer which can help you automate this.

parts tells buildout what to configure; they are described in the [scripts] and [devpython] sections later.

10 Chapter 1. Table of Contents

http://downloads.buildout.org/2/bootstrap.py
https://pypi.python.org/pypi/mr.developer

Morepath Documentation, Release 0.13.2

The line versions=versions tells buildout to lock down version numbers according to the [versions] sec-
tion.

show-picked-versions

You can add a line show-picked-versions = true to the [buildout] section. When you now run
bin/buildout this dumps all versions of libraries you use directly or indirectly that you haven’t locked down
to an explicit version to the console. You can then lock them down in the [versions] section.
Locking down versions is useful if you want to make sure everybody has the same versions of the libraries in
development.

The [scripts] section installs your web application as a script in the bin subdirectory of your project, according
to the console_scripts entry point in your project’s setup.py. If it’s called myproject-start, then you
can start it like this:

bin/myproject-start

This will start a HTTP server for your project.

The buildout also has installed pytest so you can run your project’s tests automatically:

bin/py.test myproject

(if your Python package is in myproject)

Test dependencies

If you want to add some extra dependencies just for testing, you can do this in your project’s setup.py by
adding:

extras_require = dict(
test=['pytest >= 2.5',

'pytest-cov'],
),

This makes sure we have a pytest version 2.5 or later, and we install the pytest-cov code coverage
extension.
You can then modify the [scripts] section in buildout.cfg to use the extra test requirements:

[scripts]
recipe = zc.recipe.egg:scripts
eggs = myproject [test]

pytest

Now as to some optional extras. The [devpython] section installs a Python interpreter which can import exactly
what your project can import. It assumes your project is called myproject in its setup.py; change the name to
match your project. You can start it using:

$ bin/devpython

You’ll get the usual Python console >>>. This is useful for testing your project’s imports and API manually.

It also installs the flake8 tool which runs pep 8 checks and pyflakes automatically. You can run it against your project
by writing:

$ bin/flake8 myproject

where myproject is your project’s source code directory.

1.4. Installation 11

http://pytest.org/
https://pypi.python.org/pypi/flake8

Morepath Documentation, Release 0.13.2

1.4.3 Depending on Morepath development versions

If you like being on the cutting edge and want to depend on the latest Morepath and Reg development versions always,
we recommend you use buildout with the mr.developer extension for your project. You can see how in this buildout.cfg.

You can also install these using pip (in a virtualenv). Here’s how:

$ pip install git+git://github.com/morepath/reg.git@master

$ pip install git+git://github.com/morepath/morepath.git@master

1.5 Superpowers

We said Morepath has super powers. Are they hard to use, then? No: they’re both powerful and also easy to use,
which makes them even more super!

1.5.1 Link with Ease

Since Morepath knows about your models, it can generate links to them. If you have a model instance (for example
through a database query), you can get a link to it by calling morepath.Request.link():

request.link(my_model)

Want a link to its edit view (or whatever named view you want)? Just do:

request.link(my_model, 'edit')

If you create links this way everywhere (and why shouldn’t you?), you know your application’s links will never break.

For much more, see Paths and Linking.

1.5.2 Generic UI

Morepath knows about model inheritance. It lets you define views for a base class that automatically become available
for all subclasses. This is a powerful mechanism to let you write generic UIs.

For example, if we have this generic base class:

class ContainerBase(object):
def entries(self):

"""All entries in the container returned as a list."""

We can easily define a generic default view that works for all subclasses:

@App.view(model=ContainerBase)
def overview(self, request):

return ', '.join([entry.title for entry in self.entries()])

But what if you want to do something different for a particular subclass? What if MySpecialContainer needs it
own custom default view? Easy:

@App.view(model=MySpecialContainer)
def special_overview(self, request):

return "A special overview!"

12 Chapter 1. Table of Contents

https://github.com/morepath/morepath_hello/blob/master/buildout.cfg

Morepath Documentation, Release 0.13.2

Morepath leverages the power of the flexible Reg generic function library to accomplish this.

For much more, see Views.

1.5.3 Model-driven Permissions

Morepath features a very flexible but easy to use permission system. Let’s say we have an Edit permission; it’s just
a class:

class Edit(object):
pass

And we have a view for some Document class that we only want to be accessible if the user has an edit permission:

@App.view(model=Document, permission=Edit)
def edit_document(self, request):

return "Editable"

How does Morepath know whether someone has Edit permission? We need to tell it using the
morepath.App.permission_rule() directive. We can implement any rule we want, for instance this one:

@App.permission_rule(model=Document, permission=Edit)
def have_edit_permission(identity, model, permission):

return model.has_permission(identity.userid)

Instead of a specific rule that only works for Document, we can also give our app a broad rule (use model=object).

1.5.4 Composable Views

Let’s say you have a JSON view for a Document class:

@App.json(model=Document)
def document_json(self, request):

return {'title': self.title}

And now we have a view for a container that contains documents. We want to automatically render the JSON views
of the documents in a list. We can write this:

@App.json(model=DocumentContainer)
def document_container_json(self, request):

return [document_json(request, doc) for doc in self.entries()]

Here we’ve used document_json ourselves. But what now if the container does not only contain Document
instances? What if one of them is a SpecialDocument? Our document_container_json function breaks.
How to fix it? Easy, we can use morepath.Request.view():

@App.json(model=DocumentContainer)
def document_container_json(self, request):

return [request.view(doc) for doc in self.entries()]

Now document_container_json works for anything in the container model that has a default view!

1.5.5 Extensible Applications

Somebody else has written an application with Morepath. It contains lots of stuff that does exactly what you want, and
one view that doesn’t do what you want:

1.5. Superpowers 13

http://reg.readthedocs.org

Morepath Documentation, Release 0.13.2

@App.view(model=Document)
def recalcitrant_view(self, request):

return "The wrong thing!"

Ugh! We can’t just change the application as it needs to continue to work in its original form. Besides, it’s being
maintained by someone else. What do we do now? Monkey-patch? Not at all: Morepath got you covered. You simply
create a new application subclass that extends the original:

class MyApp(App):
pass

We now have an application that does exactly what app does. Now to override that one view to do what we want:

@MyApp.view(model=Document)
def whatwewant(self, request):

return "The right thing!"

And we’re done!

It’s not just the view directive that works this way: all Morepath directives work this way.

Morepath also lets you mount one application within another, allowing composition-based reuse. See App Reuse for
more information. Using these techniques you can build large applications, see Building Large Applications.

1.5.6 Extensible Framework

Morepath’s directives are implemented using Dectate, the meta-framework for configuring Python frameworks. You
can define new directives and registries for Morepath with ease:

class Extended(morepath.App):
pass

@Extended.directive('widget')
class WidgetAction(dectate.Action):

config = {
'widget_registry': dict # use dict as a registry

}
def __init__(self, name):

self.name = name

def identifier(self):
return self.name

def perform(self, obj, widget_registry):
widget_registry[self.name] = obj

@Extended.widget('input')
def input_widget():

...

@Extended.widget('label')
def label_widget():

...

14 Chapter 1. Table of Contents

http://dectate.readthedocs.org

Morepath Documentation, Release 0.13.2

1.6 A Review of the Web

Morepath is a web framework. Here is a quick review of how the web works, how applications can be built with it,
and how Morepath fits.

1.6.1 HTTP protocol

HTTP is a protocol by which clients (such as web browsers) and servers can communicate. The client sends a HTTP
request, and the server sends back a HTTP response. HTTP is extensible, and can be extended with content types, new
headers, and so on.

Version 1.1 of HTTP is most common on the web today. It is defined by a bunch of specifications:

• RFC7230 - HTTP/1.1: Message Syntax and Routing

• RFC7231 - HTTP/1.1: Semantics and Content

• RFC7232 - HTTP/1.1: Conditional Requests

• RFC7233 - HTTP/1.1: Range Requests

• RFC7234 - HTTP/1.1: Caching

• RFC7235 - HTTP/1.1: Authentication

Luckily it’s not necessary to understand the full details of these specifications to develop a web application. We’ll go
into a basic overview of relevant concepts in this document.

Morepath handles the HTTP protocol on the server side: creating a response to incoming HTTP requests.

1.6.2 Web browser

A web browser such as Firefox, Chrome and Internet Explorer uses the HTTP protocol to talk to web servers.

A web browser is a type of HTTP client.

1.6.3 Web server

A web server implements the HTTP protocol to respond to requests from HTTP clients such as web browsers.

There are general web servers such as Apache and Nginx. These are programmable in various ways.

There are also more specific web servers that are geared at particular tasks. Examples of these are Waitress and
Gunicorn which are geared towards serving web applications written in Python.

A web server is programmable in various ways. Morepath can plug into web servers that implement the Python WSGI
protocol.

1.6.4 Web application

A web application is software that presents a user interface by means of a web browser. The web browser is usually a
visible piece of software, but may also be embedded in other software, such as in FirefoxOS.

A web application is loaded from a web server. After it is loaded it can still interact with the web server (or other web
servers). The web server can implement part of the application logic and maintains the application data.

1.6. A Review of the Web 15

https://en.wikipedia.org/wiki/Hypertext_Transfer_Protocol
http://tools.ietf.org/html/rfc7230
http://tools.ietf.org/html/rfc7231
http://tools.ietf.org/html/rfc7232
http://tools.ietf.org/html/rfc7233
http://tools.ietf.org/html/rfc7234
http://tools.ietf.org/html/rfc7235
https://httpd.apache.org/
http://nginx.org/
http://waitress.readthedocs.org
http://gunicorn.org
https://en.wikipedia.org/wiki/Web_Server_Gateway_Interface

Morepath Documentation, Release 0.13.2

The dynamic behavior of a web application used to be implemented almost entirely by the server, but it is now also
possible to implement a large part of their behavior within the web browser instead, using the JavaScript language.

Morepath code runs entirely on the server, but supports web applications that want to implement a large part of their
dynamic behavior within the web browser.

1.6.5 Web service

A web service does not present a user interface to the user. A web service instead presents an application programming
interface (API) to custom HTTP client software. The API is to this software what the UI is to the user.

You can layer a full web application on top of a web service. Such layering can result in looser coupling in the
implementation, which tends to increase the quality of the implementation.

Morepath helps developers to implement web services.

1.6.6 Custom HTTP client

A web browser is one form of HTTP client, but other HTTP software can be written in a variety of languages to talk
to a web server programmatically. This uses it as a web service.

JavaScript code in a web browser can also use the browser’s facilities to talk to the web server programmatically (a
technique called AJAX), and can thus serve as a custom HTTP client as well.

1.6.7 Framework

A library is reusable code that your code calls, whereas a framework is reusable code that calls your code. “Don’t call
us, we’ll call you”.

A framework aims to help you do particular tasks quickly; you only need to fill in the details, and the framework
handles the rest.

There is a gray area between library and framework. Morepath is mostly a framework.

1.6.8 Server web framework

A framework that helps you program the behavior of a web server. Morepath is a server web framework written in the
Python programming language.

1.6.9 JavaScript

JavaScript is a programming language that is run in the browser. It can use the web browser APIs (such as the DOM)
to manipulate the web page, get user input, or access the server programmatically (AJAX).

JavaScript can also be run on the server with Node.JS, but Morepath is a Python web framework and does not make
use of server-side JavaScript.

Bower is a tool to help manage client-side JavaScript code.

16 Chapter 1. Table of Contents

https://en.wikipedia.org/wiki/JavaScript

Morepath Documentation, Release 0.13.2

1.6.10 Bower

A popular way to install client-side JavaScript (and CSS) code is to use the Bower package management tool. By
using a package manager installing and updating a collection of JavaScript libraries becomes more easy than doing it
by hand.

Morepath offers Bower integration, see: Static resources with Morepath.

1.6.11 AJAX

AJAX is a technique to access resources programmatically from a browser application in JavaScript. These resources
typically have a JSON representation.

1.6.12 Client web framework

There are also client-side web frameworks that let you program the behavior of a web browser, typically called
“JavaScript MVC framework”. Examples of such are React, Ember and Angular.

Morepath supports client-side code that uses a client web framework, but does not implement a client web framework
itself. You can pick whichever you want.

1.6.13 WSGI

WSGI is a Python protocol by which Python code can be integrated with a web server. WSGI can also be used to
implement framework components which are layered between application code and server.

A morepath.App instance implements the WSGI protocol and can therefore be integrated with a WSGI-compliant
web server and WSGI framework component.

1.6.14 HTTP request

A HTTP request is a message a HTTP client sends to the server. The server then returns a HTTP response.

The HTTP request contains a URL path, a request method, possibly a request body, and various headers such as the
content type.

A HTTP request in Morepath is made accessible programmatically as a Python request object using the WebOb library.
It is a class:‘morepath.Request, which is a subclass of webob.request.BaseRequest.

1.6.15 HTTP response

A HTTP response returns a representation of the resource indicated by the path of the request as the response body.
The response has a content type which determines what representation is being sent. The response also has a status
code that indicates whether the request could be handled, or the reason why a detailed response could not be generated.

A lot of different representations exist. HTML is a very common one, but for programmatic clients JSON is typically
used.

Morepath lets you create a morepath.Response object directly, which is a subclass of
webob.response.Response, and return it from a view function.

1.6. A Review of the Web 17

http://bower.io
https://en.wikipedia.org/wiki/Ajax_%28programming%29
https://en.wikipedia.org/wiki/Web_Server_Gateway_Interface
http://webob.org/
http://docs.webob.org/en/latest/api/request.html#webob.request.BaseRequest
http://docs.webob.org/en/latest/api/response.html#webob.response.Response

Morepath Documentation, Release 0.13.2

More conveniently you use a specialized view type (morepath.App.json() or morepath.App.html())
and return the content that should go into the response body, such as a HTML string or a JSON-serializable ob-
ject. Morepath then automatically creates the response with the right content type for you. Should you wish to set
additional information on the response object, you can use morepath.Request.after().

1.6.16 Resource

A resource is anything that can be addressed on the web by a URL (or URI or IRI). Can be a web page presenting a
full UI (using HTML + CSS), or can be a piece of information (typically in JSON), or can also be an abstract entity
that has no representation at all.

Morepath lets you implement resources of all kinds. Normally Morepath resources have representations, but it is also
possible to implement abstract entities that have just a URL and have no representation. Morepath can also help you
create links to resources on other web servers.

1.6.17 URL

Here is an example of a URL:

http://example.com/documents/3

A HTTP client such as a web browser uses URLs to determine:

• What protocol to use to talk to the server (in this case http).

• What host to talk to (in this case example.com). This identifies the web server, though a complex host may
be implemented using a combination of web servers.

• What path to request from the server (in this case /documents/3).

The server determines how it responds to requests for particular paths.

1.6.18 URL parameters

A URL can have additional parameters:

http://example.com/documents/3?expand=1&highlight=foo

The list of parameters start with ?. Names are connected with values using =, and name/value pairs are connected
with &.

1.6.19 Path

A path is a way for a client to address a particular resource on a server. It is part of the request. The path is also part
of URLs, and thus can be used for linking resources.

Morepath connects paths with Python objects using the path directive (morepath.App.path()): it can resolve a
path to a Python object, and construct a path for a given Python object. This is described in Paths and Linking.

Example:

@App.path(path='/documents/{id}', model=Document)
def get_document(id):

return query_document(id)

18 Chapter 1. Table of Contents

https://en.wikipedia.org/wiki/Web_resource
https://en.wikipedia.org/wiki/Uniform_resource_locator
https://en.wikipedia.org/wiki/Uniform_resource_identifier
https://en.wikipedia.org/wiki/Internationalized_resource_identifier

Morepath Documentation, Release 0.13.2

If you declare arguments for get_document that do not get listed as variables in the path these are interpreted as
expected URL parameters.

1.6.20 Link generation

Morepath makes it easy to generate a hyperlink to a Python object. Morepath uses information on the object itself and
its class to determine what link to generate.

Given the path directive above, we can generate a link to an instance of Document using
morepath.Request.link():

some_document = get_some_document_from_somewhere()
request.link(some_document)

This makes it easy to create links within Morepath view functions.

Morepath’s link generation can generate links that include URL parameters.

1.6.21 Headers

A HTTP request and a HTTP response have headers. Headers contain information about the message that are not the
body: they are about the request or the response, or about the body. For example, the content-type is header named
Content-Type and has a value that is a MIME type such as text/html.

Headers are used for a wide variety of purposes, such as to declare information about how a client may cache a
response, or what kind of responses a client accepts from a server, or to pass cookies along. Here is an overview of
common headers.

In Morepath, the headers are accessible on a request and response object as the attribute
webob.request.BaseRequest.headers and webob.response.Response.headers.
which behaves like a Python dictionary. You could therefore access the request content-type using
request.headers[’Content-Type’]. But see below for a more convenient way to access the content
type.

To set the headers (or other information) on a response, you can create a morepath.Response instance in a view
function. You can then pass in the headers, or set them afterward.

Often better is to use the morepath.Request.after() decorator to declare a function that sets headers the
response object once it has been created for you by the framework.

WebOb has APIs that help you deal with many headers at a higher level of abstraction. For example,
webob.request.BaseRequest.content_type is a more convenient way to access the content type infor-
mation of a request than to access the header directly, as additional charset information is not there. Before you start to
manipulate headers directly it pays off to consult the WebOb documentation for webob.request.BaseRequest
and webob.response.Response: there may well be a better way.

Morepath also has special support for dealing with certain headers. For instance, the Forwarded header can be set by
a HTTP proxy. To make Morepath use this header for URL generation, you can use the more.forwarded extension.

1.6.22 Cookies

One special set of headers deals with HTTP cookies. A server can set a cookie on the client by passing back a special
header in its response. A cookie is much like a key/value pair in a Python dictionary.

Once the cookie has been set, the client sends back the cookie to the server during each subsequent request, again
using a header, until the cookie expires or cookie is explicitly deleted by the server using a response header.

1.6. A Review of the Web 19

https://en.wikipedia.org/wiki/Internet_media_type
https://en.wikipedia.org/wiki/List_of_HTTP_header_fields
https://en.wikipedia.org/wiki/List_of_HTTP_header_fields
http://docs.webob.org/en/latest/api/request.html#webob.request.BaseRequest.headers
http://docs.webob.org/en/latest/api/response.html#webob.response.Response.headers
http://webob.org/
http://docs.webob.org/en/latest/api/request.html#webob.request.BaseRequest.content_type
http://docs.webob.org/en/latest/api/request.html#webob.request.BaseRequest
http://docs.webob.org/en/latest/api/response.html#webob.response.Response
http://tools.ietf.org/html/rfc7239
https://pypi.python.org/pypi/more.forwarded/
https://en.wikipedia.org/wiki/HTTP_cookie

Morepath Documentation, Release 0.13.2

Normally in HTTP requests are independent from each other: assuming the server database is the same, the same
request should give the same response, no matter what other requests have gone before it. This makes it easier to
reason about HTTP, and it makes it easier to scale it up, for instance by caching responses.

Cookies change this: they can be used to make requests order-dependent. This can be useful, but it can also make it
harder to reason about what is going on and scale, so be careful with them. In particular, a REST web service should
be able to function without requiring the client to maintain cookies.

Cookies are commonly used to store login session information on the client.

WebOb makes management of cookies more convenient: the webob.request.BaseRequest.cookies at-
tribute on the request object contains the list of cookies sent by the client, and the response object has an API incuding
webob.response.Response.set_cookie() and webob.response.Response.delete_cookie()
to allow you to manage cookies.

1.6.23 Content types

A resource may present itself in variety of representations. This is indicated by the content type set in the HTTP
response, using the Content-Type header. There are a lot of content types, including HTML and JSON. The value
is a MIME type such as text/html for HTML and application/json for JSON. The value can also contain
additional parameters such as character encoding information.

WebOb makes content-type header information conveniently available with the
webob.request.BaseRequest.content_type, webob.response.Response.content_type
and webob.response.Response.content_type_params attributes.

A request may also have a content type: the request content type determines what kind of content is sent to the server
by the client in the request body.

While you can create any kind of content type with Morepath, it has special support for generating HTML and JSON
responses (using morepath.App.html() and morepath.App.json()), and for processing a JSON request
body (see load_json in JSON and objects).

1.6.24 View

In Morepath, a view is a Python function that takes a Python object to represent (self) and a morepath.Request
object (request) as arguments and returns something that can be turned into a HTTP response, or a HTTP response
object directly.

Here is an example of a Morepath view, using the most basic morepath.App.view() directive:

@App.view(model=MyObject)
def my_object_default(self, request):

return "some text content"

There are also specific morepath.App.json() and morepath.App.html() directives to support those con-
tent types.

See Views for much more on how to construct Morepath views.

1.6.25 HTTP request method

A HTTP request has a method, also known as HTTP verb. The GET method is used to retrieve information from the
server. The POST method is used to add new information to the server (for instance a form submit), and the PUT
method is used to update existing information. The DELETE method is used to delete information from the server.

20 Chapter 1. Table of Contents

http://docs.webob.org/en/latest/api/request.html#webob.request.BaseRequest.cookies
http://docs.webob.org/en/latest/api/response.html#webob.response.Response.set_cookie
http://docs.webob.org/en/latest/api/response.html#webob.response.Response.delete_cookie
https://en.wikipedia.org/wiki/Internet_media_type
http://docs.webob.org/en/latest/api/request.html#webob.request.BaseRequest.content_type
http://docs.webob.org/en/latest/api/response.html#webob.response.Response.content_type
http://docs.webob.org/en/latest/api/response.html#webob.response.Response.content_type_params

Morepath Documentation, Release 0.13.2

It is up to the server implementation how to exactly handle the request method. With Morepath, by default a view
responds to the GET method, but you can also write views to handle the other HTTP methods, by indicating it with
a view predicate. Here is a view that handles the POST method (and returns a representation of what has just been
POSTed):

@App.view(model=MyCollection, request_method='POST')
def add_to_collection(self, request):

item = MyItem(request.json)
self.add(item)
return request.view(item)

You can access the method on the request using webob.request.BaseRequest.method, but typically
Morepath does this for you when you use the request_method predicate.

1.6.26 View predicate

A view predicate in Morepath is used to match a view function with details of self and request.

This view directive:

@App.view(model=MyCollection, request_method='POST')
def add_to_collection(self, request):

...

only matches when self is an instance of MyCollection (model predicate) and when request.method is
POST (request_method predicate). Only in this case will add_to_collection be called.

You can extend Morepath with additional view predicates. You can also define a predicate fallback, which can be used
to specify what HTTP status code to set when the view cannot be matched.

See view predicates

1.6.27 HTTP status codes

HTTP status codes such as 200 Ok and 404 Not Found are part of the HTTP response. Here is a list of HTTP
status codes. The server can use them to indicate to the client whether it was successfully able to create a response, or
if not, what the problem was.

Morepath can automatically generate the correct HTTP status codes for you in many cases:

200 Ok: When the path in the request is matched with a path directive, and there is a view for the particular model
and request method.

404 Not Found: When the path does not match, or when the path matches but the path function returns None.

Also when no view is available for the request in combination with the object returned by the path function.
More specifically, the model view predicate or the name view predicate do not match.

400 Bad Request: When information in the path or request parameters could not be converted to the required types.

405 Method Not Allowed: When no view exists for the given HTTP request method. More specifically, the
request_method view predicate does not match.

422 Unprocessable Entity: When the request body supplied with a POST or PUT request can be parsed (as JSON,
for instance), but is not the correct type.

More specifically, the body_model view predicate does not match.

1.6. A Review of the Web 21

http://docs.webob.org/en/latest/api/request.html#webob.request.BaseRequest.method
http://morepath.readthedocs.org/en/latest/views.html#predicates
https://en.wikipedia.org/wiki/List_of_HTTP_status_codes
https://en.wikipedia.org/wiki/List_of_HTTP_status_codes

Morepath Documentation, Release 0.13.2

500 Internal Server Error: There is a bug in the server that causes an exception to be raised. Morepath does not
generate these itself, but a WSGI server automatically catches any exceptions not handled by Morepath and
turns them into 500 errors.

Instead of having to write code that sends back the right status codes manually, you declare paths and views with
Morepath and Morepath can usually do the right thing for you automatically. This saves you from writing a lot of
custom code when you want to implement HTTP properly.

Sometimes it is still useful to set the status code directly. WebOb lets you raise special exceptions for HTTP errors.
You can also set the webob.response.Response.status attribute on the response.

1.6.28 JSON

A representation of a resource. JSON is a language that represents data, not user interface (like HTML combined with
CSS) or logic (like Python or JavaScript). JSON looks like this:

{
"id": "foo_barson",
"name": "Foo Barson",
"occupation": "Carpenter",
"level": 34
"friends": ["http://example.com/people/qux_quxson",

"http://example.com/people/one_twonson"]
}

JSON is the most common data representation language used in REST web services. The main alternative is XML.
While XML does offer more extensive tooling support, it is a lot more verbose and more difficult to process than
JSON. JSON is already very close to the data structures of many programming languages, including JavaScript and
Python.

In Python, JSON can be constructed by combining Python dictionaries and lists with strings, numbers, booleans and
None.

With Morepath you can use the morepath.App.json() directive to generate JSON programmatically:

@App.json(model=MyObject)
def my_object_default(self, request):

return {
"id": self.id,
"name": self.name,
"occuptation": self.get_occupation(),
"level": self.level,
"friends": [request.link(friend) for friend in self.friends]

}

This works like the view directive, but in addition converts the return value of the function into a JSON response that
is sent to the client.

1.6.29 JSON-LD

JSON-LD is an extension of JSON that helps support linked data in JSON. Any JSON-LD structure is valid JSON,
but not every JSON structure is valid JSON-LD.

Using a @context, it lets a JSON object describe which parts of it contain hyperlinks, and also allows JSON property
names themselves to be interpreted as unique hyperlinks. You can also express that particular property values have a
particular data type; this can range from basic data types like datetime to custom data types like “person”. All of this
can help when you want to process JSON coming from different data sources.

22 Chapter 1. Table of Contents

http://docs.webob.org/en/latest/modules/exceptions.html
http://docs.webob.org/en/latest/api/response.html#webob.response.Response.status
https://en.wikipedia.org/wiki/JSON
http://json-ld.org/

Morepath Documentation, Release 0.13.2

Perhaps more important in practice for REST web services is that it also offers a standard way for a JSON object to
have a unique id and a type. Both are identified by a hyperlink, as the special @id and @type properties. @type in
particular makes it easier to use JSON data as hypermedia: client behavior can be driven by the type of data that is
retrieved, instead of what URL it happened to be retrieved from.

Morepath does not mandate the use of JSON-LD, or has any special support for it, but its link generation facilities
make it easier to use it.

1.6.30 HTTP API

A HTTP API is a web service that is built on HTTP; it is based on the notion of HTTP resources on URLs and has an
understanding of HTTP request methods.

This is to distinguish it from a web service implementation where HTTP is merely a transport mechanism, such as
SOAP.

Because the client needs to understand what URLs exist on the server and how to interpret their response, the coupling
between client and server code is relatively tight.

This type of web service is commonly called a REST web service, but the original definition of REST goes beyond
this and adds hypermedia. Many HTTP APIs only reach level 2 on the Richardson Maturity Model, which isn’t full
REST yet.

A HTTP API is sometimes simply called API, which is also confusing, as the word API has a lot of other uses in
development outside of HTTP.

Morepath is designed to help you build HTTP APIs, but also to go you a step further to full REST.

1.6.31 REST web service

Morepath helps you to create REST web service, also known as a hypermedia API.

This is level 3 on the Richardson Maturity Model.

This means that to interact with the content of the web service you can follow hyperlinks. A client starts at one root
URL and to get to other information it follow links in the content.

Different JSON resources can be distinguished from each other by their type; this can based on the content-type
of the response, or be based on information within the content itself, such as a type property in JSON (@type in
JSON-LD).

In other words, the web service represents itself to software much like a web site presents itself to a human: as content
with links.

A REST web service allows for a looser coupling between server and client than a plain HTTP API allows, as the
client does not need to know more than a single entry point URL into the server, and only needs an understanding of
the response types and how to navigate links.

1.6.32 HTML and CSS

HTML is a markup language used to represent a resource. Augmented by CSS, a style language, it determines what
you see on a web page.

HTML can be loaded from a files on the server; this typically done with a general web server such as Apache and
Nginx. For dynamic applications HTML can also be generated on the server, often using a server-side templating
language.

HTML may also be manipulated programmatically in the browser using JavaScript through the DOM API.

1.6. A Review of the Web 23

http://martinfowler.com/articles/richardsonMaturityModel.html
https://en.wikipedia.org/wiki/Representational_state_transfer
http://martinfowler.com/articles/richardsonMaturityModel.html
http://json-ld.org/

Morepath Documentation, Release 0.13.2

In Morepath you can use the morepath.App.html() view directive to generate HTML programmatically:

@App.view(model=MyObject)
def my_object_default(self, request):

return '<html><head></head><body></body></html>'

Morepath at this point does not have support for server-side templating.

See Static resources with Morepath for information on how you can load static resources such as CSS and JavaScript
automatically to augment a HTML page.

1.6.33 Web page

The browser displays a user interface to the user in the form of a web page. A web page is usually constructed using
HTML and CSS. Other content such as images, video, audio, SVG, canvas, WebGL may also be embedded into it.

JavaScript code is executed in the browser to make the user interface more dynamic, and this dynamism can go very
far.

A web page is loaded by putting a URL in the address bar of the browser. The browser then fetches it (and related
resources) from the server. You can do this manually, or by clicking a link, or the URL of the browser may be changed
programmatically with JavaScript code.

In the past, all web applications were implemented as a multiple web pages that were generated on the server in
response to user actions.

It is also possible to change the URL in the address bar without fetching a complete new web page from the server.
This technique is used to implement single-page web applications.

1.6.34 Single-page web application

A single-page web application (SPA) is web application that consists of a single web page that is updated within the
browser without the need to load a complete need web page. So the web page is loaded from the server only once,
when the user first goes there.

When a user interacts with it, JavaScript code is executed that updates the user interface and may also interact with a
web server using AJAX.

A single page web application may update the URL in the address bar of the browser, and respond to URL changes,
but it is the same web page that implements the behavior for all these URLs. It may need a bit of server-side support
to do so.

Morepath supports the creation of single-page web applications. It also lets you create multi-page applications, but at
this point in time has no special support for server-side templating.

1.7 Paths and Linking

1.7.1 Introduction

Morepath lets you publish model classes on paths using Python functions. It also lets you create links to model
instances. To be able do so Morepath needs to be told what variables there are in the path in order to find the model,
and how to find these variables again in the model in order to construct a link to it.

24 Chapter 1. Table of Contents

https://en.wikipedia.org/wiki/HTML
https://en.wikipedia.org/wiki/Cascading_Style_Sheets
https://en.wikipedia.org/wiki/JavaScript

Morepath Documentation, Release 0.13.2

1.7.2 Paths

Overlapping paths

Morepath lets you define multiple overlapping paths:

@App.path(model=Item, path='items/{id}')
def get_item(id):

...

@App.path(model=ItemDetail, path='items/{id}/details/{detail_id}')
def get_item_detail(id, detail_id):

...

If you have overlapping paths, you need to name the variable names the same in the overlapping part of the
paths, otherwise Morepath reports a configuration conflict. So you can’t have this:

@App.path(model=Item, path='items/{id}')
def get_item(id):

...

@App.path(model=ItemDetail, path='items/{item_id}/details/{detail_id}')
def get_item_detail(item_id, detail_id):

...

Morepath reports an error in this case, as {id} and {item_id} overlap but are different variable names.

Let’s assume we have a model class Overview:

class Overview(object):
pass

Here’s how we could expose it to the web under the path overview:

@App.path(model=Overview, path='overview')
def get_overview():

return Overview()

And let’s give it a default view so we can see it when we go to its URL:

@App.view(model=Overview)
def overview_default(self, request):

return "Overview"

No variables are involved yet: they aren’t in the path and the get_overview function takes no arguments.

Let’s try a single variable now. We have a class Document:

class Document(object):
def __init__(self, name):

self.name = name

Let’s expose it to the web under documents/{name}:

@App.path(model=Document, path='documents/{name}')
def get_document(name):

return query_document_by_name(name)

@App.view(model=Document)
def document_default(self, request):

return "Document: " + self.name

1.7. Paths and Linking 25

Morepath Documentation, Release 0.13.2

Here we declare a variable in the path ({name}), and it gets passed into the get_document function. The function
does some kind of query to look for a Document instance by name. We then have a view that knows how to display
a Document instance.

We can also have multiple variables in a path. We have a VersionedDocument:

class VersionedDocument(object):
def __init__(self, name, version):

self.name = name
self.version = version

We could expose this to the web like this:

@App.path(model=VersionedDocument,
path='versioned_documents/{name}-{version}')

def get_versioned_document(name, version):
return query_versioned_document(name, version)

@App.view(model=VersionedDocument)
def versioned_document_default(self, request):

return "Versioned document: %s %s" % (self.name, self.version)

The rule is that all variables declared in the path can be used as arguments in the model function.

1.7.3 URL query parameters

What if we want to use URL parameters to expose models? That is possible too. Let’s look at the Document case
first:

@App.path(model=Document, path='documents')
def get_document(name):

return query_document_by_name(name)

get_document has an argument name, but it doesn’t appear in the path. This argument is now taken to be a URL
parameter. So, this exposes URLs of the type documents?name=foo. That’s not as nice as documents/foo, so
we recommend against parameters in this case: you should use paths to identify something.

URL parameters are more useful for queries. Let’s imagine we have a collection of documents and we have an API on
it that allows us to search in it for some text:

class DocumentCollection(object):
def __init__(self, text):

self.text = text

def search(self):
if self.text is None:

return []
return fulltext_search(self.text)

We now publish this collection, making it searchable:

@App.path(model=DocumentCollection, path='search')
def document_search(text):

return DocumentCollection(text)

To be able to see something, we add a view that returns a comma separated string with the names of all matching
documents:

26 Chapter 1. Table of Contents

Morepath Documentation, Release 0.13.2

@App.view(model=DocumentCollection)
def document_collection_default(self, request):

return ', '.join([document.name for document in self.search()])

As you can see it uses the DocumentCollection.search method.

Unlike path variables, URL parameters can be omitted, i.e. we can have a plain search path without a text
parameter. In that case text has the value None. The search method has code to handle this special case: it
returns the empty list.

Often it’s useful to have a default instead. Let’s imagine we have a default search query, all that should be used if
no text parameter is supplied (instead of None). We make a default available by supplying a default value in the
document_search function:

@App.path(model=DocumentCollection, path='search')
def document_search(text='all'):

return DocumentCollection(text)

Note that defaults have no meaning for path variables, because whenever a path is resolved, all variables in it have
been found. They can be used as type hints however; we’ll talk more about those soon.

Like with path variables, you can have as many URL parameters as you want.

1.7.4 Extra URL query parameters

URL parameters are matched with function arguments, but it could be you’re interested in an arbitrary amount of extra
URL parameters. You can specify that you’re interested in this by adding an extra_parameters argument:

@App.path(model=DocumentCollection, path='search')
def document_search(text='all', extra_parameters):

return DocumentCollection(text, extra_parameters)

Now any additional URL parameters are put into the extra_parameters dictionary. So,
search?text=blah&a=A&b=B would match text with the text parameter, and there would be an
extra_parameters containing {’a’: ’A’, ’b’: ’B’}.

extra_parameters can also be useful for the case where the name of the parameter is not a valid Python name
(such as @foo) – you can still receive such parameters using extra_parameters.

1.7.5 Linking

To create a link to a model, we can call morepath.Request.link() in our view code. At that point the model
is examined to retrieve the variables so that the path can be constructed.

Here is a simple case involving Document again:

class Document(object):
def __init__(self, name):

self.name = name

@App.path(model=Document, path='documents/{name}')
def get_document(name):

return query_document_by_name(name)

We add a named view called link that links to the document itself:

1.7. Paths and Linking 27

Morepath Documentation, Release 0.13.2

@App.view(model=Document, name='link')
def document_self_link(self, request):

return request.link(self)

The view at /documents/foo/link produces the link /documents/foo. That’s the right one!

So, it constructs a link to the document itself. This view is not very useful, but the principle is the same everywhere in
any view: as long as we have a Document instance we can create a link to it using request.link().

You can also give link a name to link to a named view. Here’s a link2 view creates a link to the link view:

@App.view(model=Document, name='link2')
def document_self_link(self, request):

return request.link(self, name='link')

So the view at /documents/foo/link2 produces the link /documents/foo/link.

1.7.6 Linking with path variables

How does the request.link code know what the value of the {name} variable should be so that the link can be
constructed? In this case this happened automatically: the value of the name attribute of Document is assumed to be
the one that goes into the link.

This automatic rule won’t work everywhere, however. Perhaps an attribute with a different name is used, or a more
complicated method is used to construct the name. For those cases we can take over and supply a custom variables
function that knows how to construct the variables needed to construct the link from the model.

The variables function gets the model as a single argument and needs to return a dictionary. The keys should be the
variable names used in the path or URL parameters, and the values should be the values as extracted from the model.

As an example, here is the variables function for the Document case made explicit:

@App.path(model=Document, path='documents/{name}',
variables=lambda model: dict(name=model.name))

def get_document(name):
return query_document_by_name(name)

Or to spell it out without the use of lambda:

def document_variables(model):
return dict(name=model.name)

@App.path(model=Document, path='documents/{name}',
variables=document_variables)

def get_document(name):
return query_document_by_name(name)

Let’s change Document so that the name is stored in the id attribute:

class DifferentDocument(object):
def __init__(self, name):

self.id = name

Our automatic variables won’t cut it anymore, so we have to be explicit:: attribute, we can do this:

@App.path(model=DifferentDocument, path='documents/{name}',
variables=lambda model: dict(name=model.id))

def get_document(name):
return query_document_by_name(name)

28 Chapter 1. Table of Contents

Morepath Documentation, Release 0.13.2

All we’ve done is adjust the variables function to take model.id.

Getting variables works for multiple variables too of course. Here’s the explicit variables for the
VersionedDocument case that takes multiple variables:

@App.path(model=VersionedDocument,
path='versioned_documents/{name}-{version}',
variables=lambda model: dict(name=model.name,

version=model.version))
def get_versioned_document(name, version):

return query_versioned_document(name, version)

If you have extra_parameters, the default variables expects that extra_parameters to exist as an attribute
on the object, but you can write a custom variables that retrieves this dictionary from the object in some other
way:

@App.path(model=SearchResults,
path='search',
variables=lambda model: dict(text=model.search_text,

extra_parameters=model.get_extra()))
def get_search_results(text, extra_parameters):

...

1.7.7 Linking with URL query parameters

Linking works the same way for URL parameters as it works for path variables.

Here’s a get_model that takes the document name as a URL parameter, using an implicit variables:

@App.path(model=Document, path='documents')
def get_document(name):

return query_document_by_name(name)

Now we add back the same self_link view as we had before:

@App.view(model=Document, name='link')
def document_self_link(self, request):

return request.link(self)

Here’s get_document with an explicit variables:

@App.path(model=Document, path='documents',
variables=lambda model: dict(name=model.name))

def get_document(name):
return query_document_by_name(name)

i.e. exactly the same as for the path variable case.

Let’s look at a document exposed on this URL:

/documents?name=foo

Then the view documents/link?name=foo constructs the link:

/documents?name=foo

The documents/link?name=foo is interesting: the name=foo parameters are added to the end, but they are
used by the get_document function, not by its views. Here’s link2 again to further demonstrate this behavior:

1.7. Paths and Linking 29

Morepath Documentation, Release 0.13.2

@App.view(model=Document, name='link2')
def document_self_link(self, request):

return request.link(self, name='link')

When we now go to documents/link2?name=foo we get the link /documents/link?name=foo.

1.7.8 Prefixing links with a base URL

By default, morepath.Request.link() generates links as fully qualified URLs using the HOST header and the
given protocol (http, https), for instance:

http://localhost/document

You can use the morepath.App.link_prefix() decorator to override this behavior. For example, if you do not
want to add the full hostname (in fact the behavior of Morepath before version 0.9), you can write:

@App.link_prefix()
def simple_link_prefix(request):

return ''

The link_prefix function is only called once per request per app, during the first call to
morepath.Request.link() for an app. After this it is cached for the rest of the duration of that request.

1.7.9 Linking to external applications

As a more advanced use case for link_prefix, you can use it to represent an application that is completely external,
just for the purposes of making it easier to create a link to it.

Let’s say we want to be able to link to documents on the external site http://example.com, and that these
documents live on URLs like http://example.com/documents/{id}.

We can create a model for such an external document first:

class ExternalDocument(object):
def __init__(self, id):

self.id = id

And declare the path space of the external site:

@ExternalApp.path(model=ExternalDocument, path='/documents/{id}')
def get_external_document(id):

return ExternalDocument(id)

We don’t need to declare any views for ExternalDocument; ExternalApp only exists to let you generate a link
to the example.com external site more easily.

Now we want request.link(ExternalDocument(’foo’)) to result in the link
http://example.com/documents/foo. All we need to do is to declare a special link_prefix for
the external app where we hardcode http://example.com:

@ExternalApp.link_prefix()
def simple_link_prefix(request):

return 'http://example.com'

30 Chapter 1. Table of Contents

Morepath Documentation, Release 0.13.2

1.7.10 Type hints

So far we’ve only dealt with variables that have string values. But what if we want to use other types for our variables,
such as int or datetime? What if we have a record that you obtain by an int id, for instance? Given some
Record class that has an int id like this:

class Record(object):
def __init__(self, id):

self.id = id

We could do this to expose it:

@App.path(model=Record, path='records/{id}')
def get_record(id):

try:
id = int(id)

except ValueError:
return None

return record_by_id(id)

But Morepath offers a better way. We can tell Morepath we expect an int and only an int, and if something else is
supplied, the path should not match. Here’s how:

@App.path(model=Record, path='records/{id}')
def get_record(id=0):

return record_by_id(id)

We’ve added a default parameter (id=0) here that Morepath uses as an indication that only an int is expected.
Morepath will now automatically convert id to an int before it enters the function. It also gives a 404 Not Found
response for URLs that don’t have an int. So it accepts /records/100 but gives a 404 for /records/foo.

Let’s examine the same case for an id URL parameter:

@App.path(model=Record, path='records')
def get_record(id=0):

return record_by_id(id)

This responds to an URL like /records?id=100, but rejects /records/id=foo as foo cannot be converted
to an int. It rejects a request with the latter path with a 400 Bad Request error.

By supplying a default for a URL parameter we’ve accomplished two in one here, as it’s a good idea to supply defaults
for URL parameters anyway, as that makes them properly optional.

1.7.11 Conversion

Sometimes simple type hints are not enough. What if multiple possible string representations for something exist in
the same application? Let’s examine the case of datetime.date.

We could represent it as a string in ISO 8601 format as returned by the datetime.date.isoformat() method,
i.e. 2014-01-15 for the 15th of january 2014. We could also use ISO 8601 compact format, namely 20140115
(and this what Morepath defaults to). But we could also use another representation, say 15/01/2014.

Let’s first see how a string with an ISO compact date can be decoded (deserialized, loaded) into a date object:

from datetime import date
from time import mktime, strptime

def date_decode(s):
return date.fromtimestamp(mktime(strptime(s, '%Y%m%d')))

1.7. Paths and Linking 31

Morepath Documentation, Release 0.13.2

We can try it out:

>>> date_decode('20140115')
datetime.date(2014, 1, 15)

Note that this function raises a ValueError if we give it a string that cannot be converted into a date:

>>> date_decode('blah')
Traceback (most recent call last):

...
ValueError: time data 'blah' does not match format '%Y-%m-%d'

This is a general principle of decode: a decode function can fail and if it does it should raise a ValueError.

We also specify how to encode (serialize, dump) a date object back into a string:

def date_encode(d):
return d.strftime('%Y%m%d')

We can try it out too:

>>> date_encode(date(2014, 1, 15))
'20140115'

A encode function should never fail, if at least presented with input of the right type, in this case a date instance.

Inverse

To help you write these functions, note that they’re the inverse each other, so these equality are both True. For
any string s that can be decoded, this is true:

encode(decode(s)) == s

And for any object that can be encoded, this is true:

decode(encode(o)) == o

The output of decode should always be input for encode, and the output of encode should always be input for
decode.

Now that we have our date_decode and date_encode functions, we can wrap them in an
morepath.Converter object:

date_converter = morepath.Converter(decode=date_decode, encode=date_encode)

Let’s now see how we can use date_converter.

We have some kind of Records collection that can be parameterized with start and end to select records in a date
range:

class Records(object):
def __init__(self, start, end):

self.start = start
self.end = end

def query(self):
return query_records_in_date_range(self.start, self.end)

We expose it to the web:

@App.path(model=Records, path='records',
converters=dict(start=date_converter, end=date_converter))

32 Chapter 1. Table of Contents

Morepath Documentation, Release 0.13.2

def get_records(start, end):
return Records(start, end)

We also add a simple view that gives us comma-separated list of matching record ids:

@App.view(model=Records):
def records_view(self, request):

return ', '.join([str(record.id) for record in self.query()])

We can now go to URLs like this:

/records?start=20110110&end=20110215

The start and end URL parameters now are decoded into date objects, which get passed into get_records.
And when you generate a link to a Records object, the start and end dates are encoded into strings.

What happens when a decode raises a ValueError, i.e. improper dates were passed in? In that case, the URL
parameters cannot be decoded properly, and Morepath returns a 400 Bad Request response.

You can also use encode and decode for arguments used in a path:

@App.path(model=Day, path='days/{d}', converters=dict(d=date_converter))
def get_day(d):

return Day(d)

This publishes the model on a URL like this:

/days/20110101

When you pass in a broken date, like /days/foo, a ValueError is raised by the date decoder, and a 404 not
Found response is given by the server: the URL does not resolve to a model.

1.7.12 Default converters

Morepath has a number of default converters registered; we already saw examples for int and strings.
Morepath also has a default converter for date (compact ISO 8601, i.e. 20131231) and datetime (i.e.
20131231T23:59:59).

You can add new default converters for your own classes, or override existing default behavior, by using the
morepath.App.converter() decorator. Let’s change the default behavior for date in this example to use
ISO 8601 extended format, so that dashes are there to separate the year, month and day, i.e. 2013-12-31:

def extended_date_decode(s):
return date.fromtimestamp(mktime(strptime(s, '%Y-%m-%d')))

def extended_date_encode(d):
return d.strftime('%Y-%m-%d')

@App.converter(type=date)
def date_converter():

return Converter(extended_date_decode, extended_date_encode)

Now Morepath understand type hints for date differently:

@App.path(model=Day, path='days/{d}')
def get_day(d=date(2011, 1, 1)):

return Day(d)

has models published on a URL like:

1.7. Paths and Linking 33

Morepath Documentation, Release 0.13.2

/days/2013-12-31

1.7.13 Type hints and converters

You may have a situation where you don’t want to add a default argument to indicate the type hint, but you know you
want to use a default converter for a particular type. For those cases you can pass the type into the converters
dictionary as a shortcut:

@App.path(model=Day, path='days/{d}', converters=dict(d=date))
def get_day(d):

return Day(d)

The variable d is now interpreted as a date. Morepath uses whatever converter that was registered for that type.

1.7.14 List converters

What if you want to allow a list of parameters instead of just a single one? You can do this by wrapping the converter
or type in the converters dictionary in a list:

@App.path(model=Days, path='days', converters=dict(d=[date]))
def get_days(d):

return Days(d)

Now the d parameter will be interpreted as a list. This means URLs like this are accepted:

/days?d=2014-01-01

/days?d=2014-01-01&d=2014-01-02

/days

For the first case, d is a list with one date item, in the second case, d has 2 items, and in the third case the list d is
empty.

1.7.15 get_converters

Sometimes you only know what converters are available at run-time; this particularly relevant if you want to
supply converters for the values in extra_parameters. You can supply the converters using the special
get_converters parameter to @app.path:

def my_get_converters():
return { 'something': int }

@App.path(path='search', model=SearchResults,
get_converters=my_get_converters)

...

Now if there is a parameter (or extra parameter) called something, it is converted to an int.

You can combine converters and get_converters. If you use both, get_converters will override any
converters also defined in the static converters. This can also be useful for dealing with URL parameters that are
not valid Python names, such as @foo or foo[]; these can still be converted using get_converters.

34 Chapter 1. Table of Contents

Morepath Documentation, Release 0.13.2

1.7.16 Required

Sometimes you may want a URL parameter to be required: when the URL parameter is missing, it’s an error and a 400
Bad Request should be returned. You can do this by passing in a required argument to the model decorator:

@App.path(model=Record, path='records', required=['id'])
def get_record(id):

return query_record(id)

Normally when the idURL parameter is missing, the None value is passed into get_record (if there is no default).
But since we made id required, 400 Bad Request will be issued if id is missing now. required only has
meaning for URL parameters; path variables are always present if the path matches at all.

1.7.17 Absorbing

In some special cases you may want a path to match all sub-paths, absorbing them. This can be useful if you are
writing a server backend to a client side application that does routing on the client using the HTML 5 history API –
the server needs to handle catch all subpaths in that case and send them back to the client, where they can be handled
by the client-side router.

You can do this using the special absorb argument to the path decorator, like this:

class Model(object):
def __init__(self, absorb):

self.absorb = absorb

@App.path(model=Model, path='start', absorb=True)
def get_foo(absorb):

return Model(absorb)

As you can see, if you use absorb then a special absorb argument is passed into the model factory function.

Now the start path matches all of its sub-paths. So for this path:

/start/foo/bar/baz

model.absorb is foo/bar/baz.

It also matches if there is no sub-path:

/start

model.absorb is the empty string ’’.

Note that you cannot use view names with a path that absorbs; only a default view with the empty name. View names
are absorbed along with the rest of the path.

Note also that you cannot define an explicit path under an absorbed path – this is ignored. This means that the following
additional code has no effect:

@App.path(model=Foo, path='start/extra')

You can still generate a link to a model that is under an absorbed path – it uses the value of the absorb variable.

1.7.18 Linking with the model class

Instead of using morepath.Request.link() you can also construct links using
morepath.Request.class_link(). You can use this for optimization purposes when creating an in-

1.7. Paths and Linking 35

Morepath Documentation, Release 0.13.2

stance to link to would be relatively expensive; if you do have the instance it’s generally easier to just link to that
instead using request.link.

To use request.class_link you give the model class instead of an instance, and also provide a dictionary of variables to
use to construct the link:

@App.view(model=Document, name='class_link')
def document_self_link(self, request):

return request.class_link(Document, variables={'name': 'Document name'})

The variables are used in the same way as for request.link, so additional parameters listed in the path function are
interpreted as URL parameters.

Warning: request.class_link does NOT obey the defer_links directive, as this relies on the instance of what is being
linked to in order to determine the application to which it defers.

1.7.19 Proxy support

If you have a Morepath application that sits behind a trusted proxy that sets the Forwarded header, then you
want links generated by Morepath take this header into account. To do this, you can make your project
depend on the more.forwarded extension. After you have it installed, you can subclass your app from
more.forwarded.ForwardedApp to make your app proxy-aware. Note that you only need to do this for the
root app, not for any apps mounted into it.

You should only use this extension if you know you are behind a trusted proxy that indeed sets the Forwarded
header. This because otherwise you could expose your application to attacks that affect link generation through the
Forwarded header.

1.8 Views

1.8.1 Introduction

Morepath views are looked up through the URL path, but not through the routing procedure. Routing stops at models.
Then the last segment of the path is taken to identify the view by name.

1.8.2 Named views

Let’s examine a path:

/documents/1/edit

If there’s a model like this:

@App.path(model=Document, path='/documents/{id}')
def get_document(id):

return query_for_document(id)

then /edit identifies a view named edit on the Document model (or on one of its base classes). Here’s how we
define it:

@App.view(model=Document, name='edit')
def document_edit(self, request):

return "edit view on model: %s" % self.id

36 Chapter 1. Table of Contents

http://tools.ietf.org/html/rfc7239
http://pypi.python.org/pypi/more.forwarded

Morepath Documentation, Release 0.13.2

1.8.3 Default views

Let’s examine this path:

/documents/1

If the model is published on the path /documents/{id}, then this is a path to the default view of the model. Here’s
how that view is defined:

@App.view(model=Document)
def document_default(self, request):

return "default view on model: %s" % self.id

The default view is the view that gets triggered if there is no special path segment in the URL that indicates a specific
view. The default view has as its name the empty string "", so this registration is the equivalent of the one above:

@App.view(model=Document, name="")
def document_default(self, request):

return "default view on model: %s" % self.id

1.8.4 Generic views

Generic views in Morepath are nothing special: the thing that makes them generic is that their model is a base class,
and inheritance does the rest. Let’s see how that works.

What if we want to have a view that works for any model that implements a certain API? Let’s imagine we have a
Collection model:

class Collection(object):
def __init__(self, offset, limit):

self.offset = offset
self.limit = limit

def query(self):
raise NotImplementedError

A Collection represents a collection of objects, which can be ordered somehow. We restrict the objects we actually
get by offset and limit. With offset 100 and limit 10, we get objects 100 through 109.

Collection is a base class, so we don’t actually implement how to do a query. That’s up to the subclasses. We do
specify that query is supposed to return objects that have an id attribute.

We can create a view to this abstract collection that displays the ids of the things in it in a comma separated list:

@App.view(model=Collection)
def collection_default(self, request):

return ", ".join([str(item.id) for item in self.query()])

This view is generic: it works for any kind of collection.

We can now create a concrete collection that fulfills the requirements:

class Item(object):
def __init__(self, id):

self.id = id

class MyCollection(Collection):
def query(self):

return [Item(str(i)) for i in
range(self.offset, self.offset + self.limit)

1.8. Views 37

Morepath Documentation, Release 0.13.2

When we now publish the concrete MyCollection on some URL:

@App.path(model=MyCollection, path='my_collection')
def get_my_collection():

return MyCollection()

it automatically gains a default view for it that represents the ids in it as a comma separated list. So the view
collection_default is generic.

1.8.5 Details

The decorator morepath.App.view() (@App.view) takes two arguments here, model, which is the class of
the model the view is representing, and name, which is the name of the view in the URL path.

The @App.view decorator decorates a function that takes two arguments: a self and a request.

The self object is the model that’s being viewed, i.e. the one found by the get_document function. It is going to
be an instance of the class given by the model parameter.

The request object is an instance of morepath.Request, which in turn is a special kind of
webob.request.BaseRequest. You can get request information from it like arguments or form data, and it
also exposes a few special methods, such as morepath.Request.link().

The @App.path and @App.view decorators are associated by indirectly their model parameters: the view works
for a given model path if the model parameter is the same, or if the view is associated with a base class of the model
exposed by the @App.path decorator.

1.8.6 Ambiguity between path and view

Let’s examine these simple paths in an application:

/folder
/folder/{name}

/folder shows an overview of the items in it. /folder/{name} is a way to get to an individual item.

This means:

/folder/some_item

is a path if there is an item in the folder with the name some_item.

Now what if we also want to have a path that allows you to edit the folder? It’d be natural to spell it like this:

/folder/edit

i.e. there is a path /folder with a view edit.

But now we have a problem: how does Morepath know that edit is a view and not a named item in the folder? The
answer is that it doesn’t. You cannot reach the view this way.

Instead we have to make it explicit in the path that we want a view with a + character:

/folder/+edit

Now Morepath won’t try to interpret +edit as a named item in the folder, but instead looks up the view.

Any view can be addressed not just by name but also by its name with a + prefix. To generate a link to a name with a
+ prefix you can use the prefix as well, so you can write:

38 Chapter 1. Table of Contents

http://docs.webob.org/en/latest/api/request.html#webob.request.BaseRequest

Morepath Documentation, Release 0.13.2

request.link(my_folder, '+edit')

1.8.7 render

By default @App.view returns either a morepath.Response object or a string that gets turned into a response.
The content-type of the response is not set. For a HTML response you want a view that sets the content-type
to text/html. You can do this by passing a render parameter to the @App.view decorator:

@App.view(class=Document, render=morepath.render_html)
def document_default(self, request):

return "<p>Some html</p>"

morepath.render_html() is a very simple function:

def render_html(content, request):
response = morepath.Response(content)
response.content_type = 'text/html'
return response

You can define your own render functions; they just need to take some content (any object, in this case its a string),
and return a Response object.

Another render function is morepath.render_json(). Here it is:

import json

def render_json(content, request):
response = morepath.Response(json.dumps(content))
response.content_type = 'application/json'
return response

We’d use it like this:

@App.view(class=Document, render=morepath.render_json)
def document_default(self, request):

return {'my': 'json'}

HTML views and JSON views are so common we have special shortcut decorators:

• @App.html (morepath.App.html())

• @App.json (morepath.App.json())

Here’s how you use them:

@App.html(class=Document)
def document_default(self, request):

return "<p>Some html</p>"

@App.json(class=Document)
def document_default(self, request):

return {'my': 'json'}

1.8.8 Templates

You can use a server template with a view by using the template argument:

1.8. Views 39

Morepath Documentation, Release 0.13.2

@App.html(model=Document, template='document.pt')
def document_default(self, request):

return { 'title': self.title, 'content': self.content }

See Templates for more information.

1.8.9 Permissions

We can protect a view using a permission. A permission is any Python class:

class Edit(object):
pass

The class doesn’t do anything; it’s just a marker for permission.

You can use such a class with a view:

@App.view(model=Document, name='edit', permission=Edit)
def document_edit(self, request):

return 'edit document'

You can define which users have what permission on which models by using the
morepath.App.permission_rule() decorator. To learn more, read Security.

1.8.10 Manipulating the response

Sometimes you want to do things to the response specific to the view, so that you cannot do it in a render
function. Let’s say you want to add a cookie using webob.Response.set_cookie(). You don’t have ac-
cess to the response object in the view, as it has not been created yet. It is only created after the view has re-
turned. We can register a callback function to be called after the view is done and the response is ready using the
morepath.Request.after() decorator. Here’s how:

@App.view(model=Document)
def document_default(self, request):

@request.after
def manipulate_response(response):

response.set_cookie('my_cookie', 'cookie_data')
return "document default"

after only applies if the view was successfully resolved into a response. If your view raises an exception for any
reason, or if Morepath itself does, any after set in the view does not apply to the response for this exception. If the
view returns a response object directly itself, then after is also not run - you have the response object to manipulate
directly. Note that this the case when you use morepath.redirect(): this returns a redirect response object.

1.8.11 request_method

By default, a view only answers to a GET request: it doesn’t handle other request methods like POST or PUT
or DELETE. To write a view that handles another request method you need to be explicit and pass in the
request_method parameter:

@App.view(model=Document, name='edit', request_method='POST')
def document_edit(self, request):

return "edit view on model: %s" % self.id

40 Chapter 1. Table of Contents

Morepath Documentation, Release 0.13.2

Now we have a view that handles POST. Normally you cannot have multiple views for the same document with the
same name: the Morepath configuration engine rejects that. But you can if you make sure they each have a different
request method:

@App.view(model=Document, name='edit', request_method='GET')
def document_edit_get(self, request):

return "get edit view on model: %s" % self.id

@App.view(model=Document, name='edit', request_method='POST')
def document_edit_post(self, request):

return "post edit view on model: %s" % self.id

1.8.12 Grouping views

At some point you may have a lot of view decorators that share a lot of information; multiple views for the same model
are the most common example.

Instead of writing this:

@App.view(model=Document)
def document_default(self, request):

return "default"

@App.view(model=Document, name='edit')
def document_edit(self, request):

return "edit"

You can use the with statement to write this instead:

with App.view(model=Document) as view:
@view()
def document_default(self, request):

return "default"

@view(name="edit")
def document_edit(self, request):

return "edit"

This is equivalent to the above, you just don’t have to repeat model=Document. You can use this for any parameter
for @App.view.

This use of the with statement is in fact general; it can be used like this with any Morepath directive, and with any
parameter for such a directive. The with statement may even be nested, though we recommend being careful with
that, as it introduces a lot of indentation.

1.8.13 Predicates

The model, name, request_method and body_model arguments on the @App.view decorator are examples
of view predicates. You can add new ones by using the morepath.App.predicate() decorator.

Let’s say we have a view that we only want to kick in when a certain request header is set to something:

import reg

@App.predicate(generic.view, name='something', default=None,
index=reg.KeyIndex,
after=morepath.LAST_VIEW_PREDICATE)

1.8. Views 41

Morepath Documentation, Release 0.13.2

def something_predicate(request):
return request.headers.get('Something')

We can use any information in the request and model to construct the predicate. Now you can use it to make a view
that only kicks in when the Something header is special:

@App.view(model=Document, something='special')
def document_default(self, request):

return "Only if request header Something is set to special."

If you have a predicate and you don’t use it in a @App.view, or set it to None, the view works for
the default value for that predicate. The default parameter is also used when rendering a view using
morepath.Request.view() and you don’t pass in a particular value for that predicate.

Let’s look into the predicate directive in a bit more detail.

You can use either self or request as the argument for the predicate function. Morepath sees this argument and
sends in either the object instance or the request.

We use reg.KeyIndex as the index for this predicate. You can also have predicate functions that return a Python
class. In that case you should use reg.ClassIndex.

morepath.LAST_VIEW_PREDICATE is the last predicate defined by Morepath itself. Here we want to insert the
something_predicate after this predicate in the predicate evaluation order.

The after parameter for the predicate determines which predicates match more strongly than another; a predicate
after another one matches more weakly. If there are two view candidates that both match the predicates, the strongest
match is picked.

1.8.14 request.view

It is often useful to be able to compose a view from other views. Let’s look at our earlier Collection example
again. What if we wanted a generic view for our collection that included the views for its content? This is easiest
demonstrated using a JSON view:

@App.json(model=Collection)
def collection_default(self, request):

return [request.view(item) for item in self.query()]

Here we have a view that for all items returned by query includes its view in the resulting list. Since this view is
generic, we cannot refer to a specific view function here; we just want to use the view function appropriate to whatever
item may be. For this we can use morepath.Request.view().

We could for instance have a particular item with a view like this:

@App.json(model=ParticularItem)
def particular_item_default(self, request):

return {'id': self.id}

And then the result of collection_default is something like:

[{'id': 1}, {'id': 2}]

but if we have a some other item with a view like this:

@App.json(model=SomeOtherItem)
def some_other_item_default(self, request):

return self.name

42 Chapter 1. Table of Contents

Morepath Documentation, Release 0.13.2

where the name is some string like alpha or beta, then the output of collection_default is something like:

['alpha', 'beta']

So request.view can make it much easier to construct composed JSON results where JSON representations are
only loosely coupled.

You can also use predicates in request.view. Here we get the view with the name "edit" and the
request_method "POST":

request.view(item, name="edit", request_method="POST")

You can also create views that are for internal use only. You can use them with request.view() but they won’t
show up to the web; going to such a view is a 404 error. You can do this by passing the internal flag to the
directive:

@App.json(model=SomeOtherItem, name='extra', internal=True)
def some_other_item_extra(self, request):

return self.name

The extra view can be used with request.view(item, name=’extra’), but it is not available on the web
– there is no /extra view.

1.8.15 Exception views

WebOb HTTP exceptions

A list of standard WebOb HTTP exceptions

Sometimes your application raises an exception. This can either be a HTTP exception, for instance when the user goes
to a URL that does not exist, or an arbitrary exception raised by the application.

HTTP exceptions are by default rendered in the standard WebOb way, which includes some text to describe Not Found,
etc. Other exceptions are normally caught by the web server and result in a HTTP 500 error (internal server error).

You may instead want to customize what these exceptions look like. You can do so by declaring a view using the
exception class as the model. Here’s how you make a custom 404 Not Found:

from webob.exc import HTTPNotFound

@App.view(model=HTTPNotFound)
def notfound_custom(self, request):

def set_status_code(response):
response.status_code = self.code # pass along 404

request.after(set_status_code)
return "My custom not found!"

We have to add the set_status_code to make sure the response is still a 404; otherwise we change the 404 to a
200 Ok! This shows that self is indeed an instance of HTTPNotFound and we can access its code attribute.

Your application may also define its own custom exceptions that have a meaning particular to the application. You can
create custom views for those as well:

class MyException(Exception):
pass

@App.view(model=MyException)

1.8. Views 43

http://docs.webob.org/en/stable/api/exceptions.html

Morepath Documentation, Release 0.13.2

def myexception_default(self, request):
return "My exception"

Without an exception view for MyException any view code that raises MyException would bubble all the way
up to the WSGI server and a 500 Internal Server Error is generated.

But with the view for MyException in place, whenever MyException is raised you get the special view instead.

1.9 Templates

1.9.1 Introduction

When you generate HTML from the server (using HTML views) it can be very handy to have a template language
available. A template language provides some high-level constructs for generating HTML, which are handy. It can
also help you avoid HTML injection security bugs because it takes care of escaping HTML. It may also be useful to
separate HTML presentation from code.

This document discusses template rendering on the server. In some modern web applications template rendering is
done in the browser instead of on the server. To do client-side template rendering you need to use a Client web
framework with Morepath. See also Static resources with Morepath.

Morepath does not have a template language built in. The example in this document uses more.chameleon.
more.chameleon integrates the Chameleon template engine, which implements the ZPT template language. If you
prefer Jinja2, you can use the more.jinja2 extension instead. You can also integrate other template languages.

To use a template you need to use the template argument with the morepath.App.html() view directive.

1.9.2 Example

This example presupposes that more.chameleon and its dependencies have been installed. Here is how we use it:

from more.chameleon import ChameleonApp

class App(ChameleonApp):
pass

@App.template_directory()
def get_template_directory():

return 'templates'

@App.html(model=Person, template='person.pt')
def person_default(self, request):

return { 'name': self.name }

Let’s examine this code. First we import ChameleonApp and subclass from it in our own app. This enables
Chameleon templating for the .pt file extension.

We then need to specify the directory that contains our templates using the
morepath.App.template_directory() directive. The directive should return either an absolute or a
relative path to this template directory. If a relative path is returned, it is automatically made relative to the directory
the Python module is in.

Next we use template=’person.pt’ in the HTML view directive. person.pt is a file sitting in the
templates directory, with this content:

44 Chapter 1. Table of Contents

http://pypi.python.org/pypi/more.chameleon
http://pypi.python.org/pypi/more.chameleon
http://jinja.pocoo.org
http://pypi.python.org/pypi/more.jinja2
http://pypi.python.org/pypi/more.chameleon

Morepath Documentation, Release 0.13.2

<html>
<body>

<p>Hello ${name}!</p>
</body>
</html>

Once we have this set up, given a person with a name attribute of "world", the output of the view is the following
HTML:

<html>
<body>

<p>Hello world!</p>
</body>
</html>

The template is applied on the return value of the view function and the request. This results in a rendered template
that is returned as the response.

1.9.3 Overrides

When you subclass an app you may want to override some of the templates it uses, or add new templates. You can do
this by using the template_directory directive in your subclassed app:

class SubApp(App):
pass

@SubApp.template_directory()
def get_override_template_directory():

return 'templates_override'

Morepath’s template integration searches for templates in the template directories in application order, so for SubApp
here, first templates_override, and then templates as defined by the base App. So for SubApp, you
can override a template defined in the directory templates by placing a file with the same name in the directory
templates_override. This only affects SubApp, not App itself.

You can also use the before argument with the morepath.App.template_directory() direc-
tive to specify more exactly how you want template directories to be searched. This can be use-
ful if you want to organize your templates in multiple directories in the same application. If
get_override_template_directory should come before get_template_directory in the directory
search path, you should use before=get_template_directory:

@SubApp.template_directory(before=get_template_directory)
def get_override_template_directory():

return 'templates_override'

but it is usually simpler not to be this explicit and to rely on application inheritance instead.

1.9.4 Details

Templates are loaded during configuration time at startup. The file extension of the extension (such as .pt) indicates
the template engine to use.

Morepath itself does not support any template language out of the box, but lets you register a template language engine
for a file extension. You can reuse a template language integration in the same way you reuse any Morepath code: by
subclassing the app class that implements it in your app.

The template language integration works like this:

1.9. Templates 45

Morepath Documentation, Release 0.13.2

• During startup time, person.pt is loaded from the configured template directories as a template object.

• When the person_default view is rendered, its return value is passed into the template, along with the
request. The template language integration code then makes this information available for use by the template –
the details are up to the integration (and should be documented there).

The template argument works not just with html but also with view, json, and any other view functions you
may have. It’s most useful for html views however.

1.9.5 Integrating a new template engine

A template in Morepath is actually just a convenient way to generate a render function for a view. That render
function is then used just like when you write it manually: it’s given the return value of the view function along with
a request object, and should return a WebOb response.

Here is an example of how you can integrate the Chameleon template engine for .pt files (taken from
more.chameleon):

import chameleon

@App.template_loader(extension='.pt')
def get_template_loader(template_directories, settings):

settings = settings.chameleon.__dict__.copy()
we control the search_path entirely by what we pass here as
template_directories, so we never want the template itself
to prepend its own path
settings['prepend_relative_search_path'] = False
return chameleon.PageTemplateLoader(

template_directories,
default_extension='.pt',

**settings)

@App.template_render(extension='.pt')
def get_chameleon_render(loader, name, original_render):

template = loader.load(name)

def render(content, request):
variables = {'request': request}
variables.update(content)
return original_render(template.render(**variables), request)

return render

@App.setting_section(section='chameleon')
def get_setting_section():

return {'auto_reload': False}

Some details:

• extension is the file extension. When you refer to a template with a particular extension, this template engine
is used.

• The function decorated by morepath.App.template_loader() gets two arguments: directories to look
in for templates (earliest in the list first), and Morepath settings from which template engine settings can be
extracted.

• The function decorated by morepath.App.template_render() gets three arguments:

– loader: the loader constructed by the template_loader directive.

– name: the name of the template to create a render function for.

46 Chapter 1. Table of Contents

http://pypi.python.org/pypi/more.chameleon

Morepath Documentation, Release 0.13.2

– The original_render function as passed into the view decorator, so render_html for instance.
It takes the content to render and the request and returns a webob response object. then passed along to
Chameleon.

The decorated function needs to return a render function which takes the content to render (output from view
function) and the request as arguments.

The implementation of this can use the original render function which is passed in as an argument as
original_render function. It can also create a morepath.Response object directly.

1.10 Configuration

1.10.1 Introduction

When you use a Morepath directive, for example to define a view, a path, a setting or a tween, this is called Morepath
configuration. Morepath configuration can also be part of third-party code you want to use.

1.10.2 How it works

Morepath needs to be configured before it is run. That means that you need to run the necessary configuration steps
before you pass a new instance of your application to your WSGI server:

if __name__ == '__main__':
morepath.autocommit()

application = App()
morepath.run(application)

Morepath registers any directive you used in modules that you have imported, directly or indirectly, with the App
subclass you used it on. It also creates a list of your app classes (App subclasses) you have imported.

morepath.autocommit() then commits the configuration for all of your app classes. After this, the application
can be run. The commit procedure makes sure there are no conflicting pieces of configuration and resolves any
configuration overrides.

When you depend on a package that contains Morepath code it is convenient to be able to scan all of it at once. That
way you can’t accidentally forget to import a module and thus have its directives not be active. You can scan a whole
package with morepath.scan():

import my_package

if __name__ == '__main__':
morepath.scan(my_package)
morepath.autocommit()

application = App()
morepath.run(application)

Since scanning the current package is common, we have a convenience shortcut that scan the package the code is in
automatically. You use it by calling morepath.scan() without arguments:

if __name__ == '__main__':
morepath.scan()
morepath.autocommit()

1.10. Configuration 47

Morepath Documentation, Release 0.13.2

application = App()
morepath.run(application)

You can also use scan() with packages that contain third-party Morepath code, but there is actually a better way.

1.10.3 Scanning dependencies

Morepath is a micro-framework at its core, but you can expand it with other packages that add extra functionality. For
instance, you can use more.chameleon for templating or more.transaction for SQLAlchemy integration.

These packages contain their own Morepath configuration, so when we use these packages we need to make sure to
scan them too.

Manual scan

The most explicit way of scanning your dependencies is a manual scan.

Say you depend on more.jinja2 and you want to extend the the first example.

This is what you do:

import more.jinja2

if __name__ == '__main__':
morepath.scan(more.jinja2) # scan Jinja2 package
morepath.scan() # scan this package
morepath.autocommit()

application = App()
morepath.run(application)

As you can see, you need to import your dependency and scan it using scan(). If you have more dependencies, just
add them in this fashion.

Automatic scan

Scanning versus activation

Automatically configuring all packages that have Morepath configuration in them may seem too aggressive:
what if you don’t want to use this configuration? This is not a problem as Morepath makes a distinction between
scanned configuration and activated configuration.
Configuration is only activated if it’s on the morepath.App subclass you actually run as a WSGI app, or
on any app class that your application class inherits from. App classes that you don’t use are not active. It is
therefore safe for Morepath to just scan everything that is available.

Manual scanning can get tedious and error-prone as you need to add each and every new dependency that you rely on.

You can use autoscan() instead, which scans all packages that have a dependency on Morepath declared. Let’s
look at a modified example that uses autoscan:

if __name__ == '__main__':
morepath.autoscan()
morepath.scan()
morepath.autocommit()

48 Chapter 1. Table of Contents

https://github.com/morepath/more.chameleon
https://github.com/morepath/more.transaction
https://github.com/morepath/more.jinja2

Morepath Documentation, Release 0.13.2

application = App()
morepath.run(application)

As you can see, we also don’t need to import or scan dependencies anymore. We still need to run scan() without
parameters however, so our own package or module gets scanned.

We can get rid of the scan() line if we move our own code into a proper Python project too.

Autosetup

In the previous example we still needed to scan the startup module itself, so that is why we need scan(). We can get
rid of that line by turning the code into a full Python project with its own setup.py. The setup.py looks like this:

setup(name='myapp',
packages=find_packages(),
install_requires=[

'morepath'
])

with the code in a Python package called myapp (a directory with an __init__.py file in it).

See Organizing your Project for a lot more information on how to do this, including tips on how to best organize your
Python code.

Once you put your code in a Python project with a setup.py, you can simplify the configuration scan to this:

if __name__ == '__main__':
morepath.autosetup()
morepath.run(App())

morepath.autosetup() makes sure to scan all packages with Morepath code, and commits the configuration.

Writing scannable packages

A Morepath scannable Python package has to fulfill a few requirements.

1. The package must be made available using a setup.py file.

See Organizing your Project and the Setuptool’s documentation for more information.

2. The package itself or a dependency of the package must include morepath in the install_requires list
of the setup.py file.

Morepath only scans package that depend directly or indirectly on Morepath. It filters out packages which in no
way depend on Morepath. So if your package has any Morepath configuration, you need to add morepath to
install_requires:

setup(name='myapp'
...
install_requires=[

'morepath'
])

If you set up your dependencies up correctly using install_requires this should be there anyway, or be a
dependency of another dependency that’s in install_requires. Morepath just uses this information to do
its scan.

1.10. Configuration 49

https://pythonhosted.org/setuptools/

Morepath Documentation, Release 0.13.2

3. The Python project name in setup.py should have the same name as the Python package name, or you use
entry points to declare what should be scanned.

Scan using naming convention:

The project name defined by setup.py can be imported in Python as well: they have the same
name. For example: if the project name is myapp, the package that contains your code must be
named myapp as well. (not my-app or MyApp or Elephant):

So if you have a setup.py like this:

setup(
name='myapp',
packages=find_packages(),
...

you should have a project directory structure like this:

setup.py
myapp

__init__.py
another_module.py

In other words, the project name myapp can be imported:

import myapp

If you use a namespace package, you include the full name in the setup.py:

setup(
name='my.app'
packages=find_packages()
namespace_packages=['my']
...

This works with a project structure like this:

setup.py
my

__init__.py
app
__init__.py
another_module.py

We recommend you use this naming convention as your Python projects get a consistent layout. But
you don’t have to – you can use entry points too.

Scan entry points:

If for some reason you want a project name that is different from the package name you can still get
it scanned automatically by Morepath. In this case you need to explicitly tell Morepath what to scan
with an entry point in setup.py:

setup(name='elephant'
...
entry_points={

'morepath': [
'scan = my.package'

]
}

Note that you still need to have morepath in the install_requires list for this to work.

50 Chapter 1. Table of Contents

Morepath Documentation, Release 0.13.2

1.10.4 More information

Even more information and nitty gritty details can be found in the API docs. See API.

1.11 JSON and objects

1.11.1 Introduction

Morepath lets you define a JSON representations for arbitrary Python objects. When you return such an object from
a json view, the object is automatically converted to JSON. When JSON comes in as the POST or PUT body of the
request, this JSON can be automatically converted to a Python object. This system allows you to write views in terms
of Python objects instead of JSON.

1.11.2 dump_json

The morepath.App.dump_json() directive lets you define a function that turns a model of a particular class
into JSON. Here we define it for an Item class:

class Item(object):
def __init__(self, value):

self.value = value

@App.dump_json(model=Item)
def dump_item_json(self, request):

return { 'type': 'Item', 'x': self.value }

So for instance, Item(’foo’) is represented in JSON as:

{
'type': 'Item',
'x': 'foo'

}

If we omit the model argument from the directive, we define a general dump_json function that applies to all objects.

Now we can write a JSON view that just returns an Item instance:

@App.json(model=Item)
def item_default(self, request):

return self

The self we return in this view is an istance of Item. This is now automatically converted to a JSON object.

1.11.3 load_json

The App.load_json() directive lets you define a function that turns incoming JSON into a Python object. We
detect JSON with the type field Item and interpret it as an Item instance, and pass through everything else:

@App.load_json()
def load_json(json, request):

if json.get('type') != 'Item':
return json

return Item(json['x'])

1.11. JSON and objects 51

Morepath Documentation, Release 0.13.2

When you write a json view you automatically get the Item instance as the body_obj attribute of the request:

@App.json(model=Collection, request_method='POST')
def collection_post(self, request):

collection.add(request.body_obj)
return "success!"

For a worked out example that uses load_json see REST.

1.12 Security

1.12.1 Introduction

The security infrastructure in Morepath helps you make sure that web resources published by your application are only
accessible by those persons that are allowed to do so. If a person is not allowed access, they will get an appropriate
HTTP error: HTTP Forbidden 403.

1.12.2 Identity

Using settings in the identity policy

The function decorated by the @App.identity_policy decorator takes an optional settings argument,
which provides access to the App settings. So if you define some settings for the identity policy you can pass
them in like this:

@App.setting_section(section="policy")
def get_policy_settings():

return {'encryption_key': 'secret'}

@App.identity_policy()
def get_identity_policy(settings):

policy_settings = settings.policy.__dict__.copy()
return CustomIdentityPolicy(**policy_settings)

Before we can determine who is allowed to do what, we need to be able to identify who people are in the first place.

The identity policy in Morepath takes a HTTP request and establishes a claimed identity for it. For basic authentica-
tion for instance it will extract the username and password. The claimed identity can be accessed by looking at the
morepath.Request.identity attribute on the request object.

You use the morepath.App.identity_policy() directive to install an identity policy into a Morepath app:

from morepath.security import BasicAuthIdentityPolicy

@App.identity_policy()
def get_identity_policy():

return BasicAuthIdentityPolicy()

If you want to create your own identity policy, see the morepath.security.IdentityPolicy API documen-
tation to see what methods you need to implement.

52 Chapter 1. Table of Contents

Morepath Documentation, Release 0.13.2

1.12.3 Verify identity

The identity policy only establishes who someone is claimed to be. It doesn’t verify whether that person is actually
who they say they are. For identity policies where the browser repeatedly sends the username/password combination
to the server, such as with basic authentication and cookie-based authentication, we need to check each time whether
the claimed identity is actually a real identity.

By default, Morepath will reject any claimed identities. To let your application verify identities, you need to use
morepath.App.verify_identity():

@App.verify_identity()
def verify_identity(identity):

return user_has_password(identity.username, identity.password)

The identity object received here is as established by the identity policy. What the attributes of the identity object
are (besides username) is also determined by the specific identity policy you install.

Note that user_has_password stands in for whatever method you use to check a user’s password; it’s not part of
Morepath.

1.12.4 Session or ticket identity verification

If you use an identity policy based on the session (which you’ve made secure otherwise), or on a cryptographic ticket
based authentication system such as the one implemented by mod_auth_tkt, the claimed identity is actually enough.

We know that the claimed identity is actually the one given to the user earlier when they logged in. No database-
based identity check is required to establish that this is a legitimate identity. You can therefore implement
verify_identity like this:

@App.verify_identity()
def verify_identity(identity):

trust the identity established by the identity policy
return True

a ticket based identity policy implementation?

There is no implementation yet of a ticket based identity policy in Morepath. Will you implement one? You
could port it from Pyramid.

1.12.5 Login and logout

So now we know how identity gets established, and how it can be verified. We haven’t discussed yet how a user
actually logs in to establish an identity in the first place.

For this, we need two things:

• Some kind of login form. Could be taken care of by client-side code or by a server-side view. We leave this as
an exercise for the reader.

• The view that the login data is submitted to when the user tries to log in.

How this works in detail is up to your application. What’s common to login systems is the action we take when the
user logs in, and the action we take when the user logs in. When the user logs in we need to remember their identity
on the response, and when the user logs in we need to forget their identity again.

1.12. Security 53

http://www.openfusion.com.au/labs/mod_auth_tkt/

Morepath Documentation, Release 0.13.2

Here is a sketch of how logging in works. Imagine we’re in a Morepath view where we’ve already retrieved username
and password from the request (coming from a login form):

check whether user has password, using password hash and database
if not user_has_password(username, password):

return "Sorry, login failed" # or something more fancy

now that we've established the user, remember it on the response
@request.after
def remember(response):

identity = morepath.Identity(username)
morepath.remember_identity(response, request, identity)

This is enough for session-based or cryptographic ticket-based authentication.

For cookie-based authentication where the password is sent as a cookie to the server for each request, we need to make
sure include the password the user used to log in, so that remember can then place it in the cookie so that it can be
sent back to the server:

@request.after
def remember(response):

identity = morepath.Identity(username, password=password)
morepath.remember_identity(response, request, identity)

When you construct the identity using morepath.security.Identity , you can any data you want in the
identity object by using keyword parameters.

Logging out

Logging out is easy to implement and will work for any kind of authentication except for basic auth (see later). You
simply call morepath.forget_identity somewhere in the logout view:

@request.after
def forget(response):

morepath.forget_identity(response, request)

This will cause the login information (in cookie-form) to be removed from the response.

Basic authentication

Basic authentication is special in a number of ways:

• The HTTP response status that triggers basic auth is Unauthorized (401), not the default Forbidden (403). This
needs to be sent back to the browser each time login fails, so that the browser asks the user for a username and
a password.

• The username and password combination is sent to the server by the browser automatically; there is no need to
set some type of cookie on the response. Therefore remember_identity does nothing.

• With basic auth, there is no universal way for a web application to trigger a log out. Therefore
forget_identity does nothing either.

To trigger a 401 status when time Morepath raises a 403 status, we can use an exception view, something like this:

from webob.exc import HTTPForbidden

@App.view(model=HTTPForbidden)
def make_unauthorized(self, request):

54 Chapter 1. Table of Contents

Morepath Documentation, Release 0.13.2

@request.after
def set_status_code(response):

response.status_code = 401
return "Unauthorized"

The core of the login code can remain the same as remember_identity is a no-op, but you could reduce it to this:

check whether user has password, using password hash and database
if not user_has_password(username, password):

return "Sorry, login failed" # or something more fancy

1.12.6 Permissions

Now that we have a way to establish identity and a way for the user to log in, we can move on to permissions.
Permissions are per view. You can define rules for your application that determine when a user has a permission.

Let’s say we want two permissions in our application, view and edit. We define those as plain Python classes:

class ViewPermission(object):
pass

class EditPermission(object):
pass

Permission Hierarchy

Since permissions are classes they could inherit from each other and form some kind of permission hierarchy,
but we’ll keep things simple here. Often a flat permission hierarchy is just fine.

Now we can protect views with those permissions. Let’s say we have a Document model that we can view and edit:

@App.html(model=Document, permission=ViewPermission)
def document_view(request, model):

return "<p>The title is: %s</p>" % model.title

@App.html(model=Document, name='edit', permission=EditPermission)
def document_edit(request, model):

return "some kind of edit form"

This says:

• Only allow access to document_view if the identity has ViewPermission on the Document model.

• Only allow allow access to document_edit if the identity has EditPermission on the Document
model.

1.12.7 Permission rules

Now that we give people a claimed identity and we have guarded our views with permissions, we need to establish who
has what permissions where using some rules. We can use the morepath.App.permission_rule() directive
to do that.

This is very flexible. Let’s look at some examples.

Let’s give absolutely everybody view permission on Document:

1.12. Security 55

Morepath Documentation, Release 0.13.2

@App.permission_rule(model=Document, permission=ViewPermission)
def document_view_permission(identity, model, permission)

return True

Let’s give only those users that are in a list allowed_users on the Document the edit permission:

@App.permission_rule(model=Document, permission=EditPermission)
def document_edit_permission(identity, model, permission):

return identity.userid in model.allowed_users

This is just is one hypothetical rule. allowed_users on Document objects is totally made up and not part of
Morepath. Your application can have any rule at all, using any data, to determine whether someone has a permission.

1.12.8 Morepath Super Powers Go!

What if we don’t want to have to define permissions on a per-model basis? In our application, we may have a generic
way to check for the edit permission on any kind of model. We can easily do that too, as Morepath knows about
inheritance:

@App.permission_rule(model=object, permission=EditPermission)
def has_edit_permission(identity, model, permission):

... some generic rule ...

This permission function is registered for model object, so will be valid for all models in our application.

What if we want that policy for all models, except Document where we want to do something else? We can do that
too:

@App.permission_rule(model=Document, permission=EditPermission)
def document_edit_permission(identity, model, permission):

... some special rule ...

You can also register special rules that depend on identity. If you pass identity=None, you can can register a
permission policy for when the user has not logged in yet and has no claimed identity:

@App.permission_rule(model=object, permission=EditPermission, identity=None)
def has_edit_permission_not_logged_in(identity, model, permission):

return False

This permission check works in addition to the ones we specified above.

If you want to defer to a completely generic permission engine, you could define a permission check that works for
any permission:

@App.permission_rule(model=object, permission=object)
def generic_permission_check(identity, model, permission):

... generic rule ...

1.13 REST

1.13.1 Introduction

56 Chapter 1. Table of Contents

Morepath Documentation, Release 0.13.2

How to think RESTful thoughts

So what does it mean for a web service to be RESTful? It might help to remember this when thinking about
REST:

client :: RESTful web service
is like:

human with browser :: well-designed multi-page web application
So if you have experience with developing good multi-page web applications, then you can apply this experience
to REST web service design and you’re off to a good start.

In this section we’ll look at how you could go about implementing a RESTful web service with Morepath.

REST stands for Representational State Transfer, and is a particular way to design web services. We won’t try to
explain here why this can be a good thing for you to do, just explain what is involved.

REST is not only useful for pure web services, but is also highly relevant for web application development, especially
when you are building a single-page rich client application in JavaScript in the web browser. It can be beneficial to
organize the server-side application as a RESTful web service.

1.13.2 Elements of REST

That’s all rather abstract. Let’s get more concrete. It’s useful to refer to the Richardson Maturity Model for REST in
this context. In REST we do the following:

• We uses HTTP as a transport system. What you use to communicate is typically JSON or XML, but it could be
anything.

• We don’t just use HTTP to tunnel method calls to a single URL. Instead, we model our web service as resources,
each with their own URL, that we can interact with.

• We use HTTP methods meaningfully. Most importantly we use GET to retrieve information, and POST when
we want to change information. Along with this we also use HTTP response status codes meaningfully.

• We have links between the resources. So, one resource points to another. A container resource could point to
a link that you can POST to create a new sub resource in it, for instance, and may have a list of links to the
resources in the container. See also HATEOAS.

Morepath has features that help you create RESTful applications.

1.13.3 HTTP as a transport system

We don’t really need to say much here, as Morepath is of course all about HTTP in the end. Morepath lets you write a
bare-bones view using morepath.App.view(). This also lets you pass in a render function that lets you specify
how to render the return value of the view function as a morepath.Response. If you use JSON, for convenience
you can use morepath.App.json() has a JSON render function baked in.

We could for instance have a Document model in our application:

class Document(object):
def __init__(self, title, author, content):

self.title = title
self.author = author
self.content = content

We can expose it on a URL:

1.13. REST 57

https://en.wikipedia.org/wiki/Representational_state_transfer
http://martinfowler.com/articles/richardsonMaturityModel.html
https://en.wikipedia.org/wiki/HATEOAS

Morepath Documentation, Release 0.13.2

@App.path(model=Document, path='documents/{id}')
def get_document(id=0):

return document_by_id(id)

We assume here that a document_by_id() function exists that returns a Document instance by integer id from
some database, or None if the document cannot be found. Any way to get your model instance is fine. We use id=0
to tell Morepath that ids should be converted to integers, and to with a BadRequest if that is not possible.

Now we need a view that exposes the resource to JSON:

@App.json(model=Document)
def document_default(self, request):

return {
'type': 'document',
'id': self.id,
'title': self.title,
'author': self.author,
'content': self.content

}

1.13.4 Modeling as resources

Modeling a web service as multiple resources comes pretty naturally to Morepath. You think carefully about how to
place models in the URL space and then expose them using morepath.App.path(). Each model class can only
be exposed on a single URL (per app), which gives them a canonical URL automatically.

A collection resource could be modelled like this:

class DocumentCollection(object):
def __init__(self):

self.documents = []
self.id_counter = 0

def add(self, doc):
doc.id = self.id_counter
self.id_counter += 1
return doc

We now want to expose this collection to a URL path /documents. We want:

• when you GET /documents we want to get the ids documents in the collection.

• when you POST to /documents with a JSON body we want to add it to the collection.

Here is how we can make documents available on a URL:

documents = DocumentCollection()

@App.path(model=DocumentCollection, path='documents')
def get_document_collection():

return documents

When someone accesses /documents they should get a JSON structure which includes ids of all documents in the
collection. Here’s how to do that (for GET, the default):

@App.json(model=DocumentCollection)
def document_collection_default(self, request):

return {
'type': 'document_collection',

58 Chapter 1. Table of Contents

Morepath Documentation, Release 0.13.2

'ids': [doc.id for doc in self.documents]
}

We also want to allow people to POST new documents (as a JSON POST body):

@App.json(model=DocumentCollection, request_method='POST')
def document_collection_post(self, request):

json = request.json
result = self.add(Document(title=json['title],

author=json['author'],
content=json['content']))

return request.view(result)

We use Request.view() to return the JSON structure for the added document again. This is handy as it includes
the id field.

1.13.5 HTTP response status codes

When a view function returns normally, Morepath automatically sets the response HTTP status code to 200 Ok.

When you try to access a URL that cannot be routed to a model because no path exists, or because the function involved
returns None, or because the view cannot be found, a 404 Not Found error is raised.

If you access a URL that does exist but with a request method that is not supported, a 405 Method Not Allowed
error is raised.

What if the user sends the wrong information to a view? Let’s consider the POST view again:

@App.json(model=DocumentCollection, request_method='POST')
def document_collection_post(self, request):

json = request.json
result = self.add(Document(title=json['title],

author=json['author'],
content=json['content']))

return request.view(result)

What if the structure of the JSON submitted is not a valid document but contains some other information, or misses
essential information? We should reject it if so. We can do this by raising a HTTP error ourselves. WebOb, the
request/response library upon which Morepath is built, defines a set of HTTP exception classes webob.exc that we
can use:

@App.json(model=DocumentCollection, request_method='POST')
def document_collection_post(self, request):

if not is_valid_document_json(request.json):
raise webob.exc.HTTPUnprocessableEntity()

result = self.add(Document(title=json['title],
author=json['author'],
content=json['content']))

return request.view(result)

What status code is right?

There is some debate over what status code to pick for content that is submitted that can be parsed but is incor-
rect. Some REST implementations use 400 Bad Request, others use 422 Unprocessable Entity.
Morepath uses the latter by default, as we’ll see in a bit.

1.13. REST 59

http://docs.webob.org/en/latest/api/exceptions.html#module-webob.exc

Morepath Documentation, Release 0.13.2

Now we raise 422 Unprocessable Entity when the submitted JSON body is invalid, using a function
is_valid_document_json that does the checking. is_valid_document could look this:

def is_valid_document_json(json):
if json['type'] != 'document':

return False
for name in ['title', 'author', 'content']:

if name not in json:
return False

return True

1.13.6 body_model

Instead of checking the content for validity in the view, we can use App.load_json():

@App.load_json():
def load_json(json, request):

if is_valid_document_json(json):
return Document(title=json['title'],

author=json['author']
content=json['content'])

fallback, just return plain JSON
return json

Now we get a Document instance in Request.body_obj, so we can simplify
document_collection_post:

@App.json(model=DocumentCollection, request_method='POST')
def document_collection_post(self, request):

if not isinstance(request.body_obj, Document):
raise webob.exc.HTTPUnprocessableEntity()

result = self.add(request.body_obj)
return request.view(result)

To only match if body_obj is an instance of Document we can use body_model on the view instead:

@App.json(model=DocumentCollection, request_method='POST', body_model=Document)
def document_collection_post(self, request):

result = self.add(request.body_obj)
return request.view(result)

Now you get the 422 error for free if no matching body_model can be found. You can also create additional POST
views for DocumentCollection that handle other types of JSON content this way.

1.13.7 Linking: HATEOAS

We’ve now reached the point where many would say that this is a RESTful web service. But in fact a vital ingredient
is still missing: hyperlinks. That ugly acronym HATEOAS thing.

60 Chapter 1. Table of Contents

https://en.wikipedia.org/wiki/HATEOAS

Morepath Documentation, Release 0.13.2

Hyperlinks!

Since hyperlinks are so commonly missing from web services that claim to be RESTful, we’ll break our promise
here not to motivate why REST is good, and have a brief discussion on why hyperlinking is a good idea.
Without hyperlinks, a client is coupled to the server in two ways:

• URLs: it needs to know what URLs the server exposes.
• Data: it needs to know how to interpret the data coming from the server, and what data to send to the

server.
Now add HATEOAS and get true REST. Now the client is coupled to the server in only one way: data. It gets
the URLs it needs from the data. We gain looser coupling between server and client: the server can change all
its URLs and the client will continue to work.
You may quibble and say the client still needs to know the original URL of the server to get started, and dig up
all the other URLs from the data afterward. That’s true – but that’s all that’s needed. It’s normal. Think again
like how a human interacts with the web through the browser: you may use a search engine or bookmarks to get
the initial URL of a site, and then you go to pages in that site by clicking links.

Morepath makes it easy to create hyperlinks, so we won’t have to do much. Before we had this for the collection view:

@App.json(model=DocumentCollection)
def document_collection_default(self, request):

return {
'type': 'document_collection',
'ids': [doc.id for doc in self.documents]

}

We can change this so instead of ids, we return a list of document URLs instead:

@App.json(model=DocumentCollection)
def document_collection_default(self, request):

return {
'type': 'document_collection',
'documents': [request.link(doc) for doc in self.documents],

}

Now we’ve got HATEOAS: the collection links to the documents it contains. The developers looking at the responses
your web service sends get a few clues about where to go next. Coupling is looser.

We have HATEOAS, so at last we got true REST. Why is hyperlinking so often ignored? Why don’t more systems
implement HATEOAS? Perhaps because they make linking to things too hard or too brittle. Morepath instead makes
it easy. Link away!

1.13.8 Compose from reusable apps

If you’re going to create a larger RESTful web service, you should start thinking about composing them from smaller
applications. See App Reuse for more information.

1.14 Settings

1.14.1 Introduction

A typical application has some settings: if an application logs, a setting is the path to the log file. If an application
sends email, there are settings to control how email is sent, such as the email address of the sender.

1.14. Settings 61

Morepath Documentation, Release 0.13.2

Applications that serve as frameworks for other applications may have settings as well: the transaction_app
defined by more.transaction for instance has settings controlling transactional behavior.

Morepath has a powerful settings system that lets you define what settings are available in your application and
framework. It allows an app that extends another app to override settings. This lets an app that defines a framework
can also define default settings that can be overridden by the extending application if needed.

1.14.2 Defining a setting

You can define a setting using the App.setting() directive:

@App.setting(section="logging", name="logfile")
def get_logfile():

return "/path/to/logfile.log"

You can also use this directive to override a setting in another app:

class Sub(App):
pass

@Sub.setting(section="logging", name="logfile")
def get_logfile_too():

return "/a/different/logfile.log"

Settings are grouped logically: a setting is in a section and has a name. This way you can organize all settings that
deal with logging under the logging section.

1.14.3 Accessing a setting

During runtime, you can access the settings of the current application using the morepath.settings() function,
like this:

settings().logging.logfile

In a tween factory (see Tweens) or a directive implementation, you can access a setting through the app object like
this:

app.registry.settings.logging.logfile

1.14.4 Defining multiple settings

It can be convenient to define multiple settings in a section at once. You can do this using the
App.setting_section() directive:

@App.setting_section(section="logging")
def get_setting_section():

return {
'logfile': "/path/to/logfile.log",
'loglevel': logging.WARNING

}

You can mix setting and setting_section freely, but you cannot define a setting multiple times in the same
app, as this will result in a configuration conflict.

62 Chapter 1. Table of Contents

https://github.com/morepath/more.transaction

Morepath Documentation, Release 0.13.2

1.15 Organizing your Project

1.15.1 Introduction

Morepath does not put any requirements on how your Python code is organized. You can organize your Python project
as you see fit and put app classes, paths, views, etc, anywhere you like. A single Python package (or even module) may
define a single Morepath app, but could also define multiple apps. In this Morepath is like Python itself; the Python
language does not restrict you in how you organize functions and classes.

While this leaves you free to organize your code as you see fit, that doesn’t mean that your code shouldn’t be organized.
Here are some guidelines on how you may want to organize things in your own project. But remember: these are
guidelines to break when you see the need.

1.15.2 Python project

It is recommended you organize your code in a Python project with a setup.py where you declare the dependency
on Morepath. If you’re unfamiliar with how this works, you can check out this tutorial.

Doing this is good Python practice and makes it easy for you to install and distribute your project using common tools
like pip, buildout and PyPI. In addition Morepath itself can also load its code more easily.

1.15.3 Project layout

Here’s a quick overview of the files and directories of Morepath project that follows the guidelines in this document:

myproject
setup.py
myproject

__init__.py
app.py
model.py
[collection.py]
path.py
run.py
view.py

1.15.4 Project setup

Here is an example of your project’s setup.py with only those things relevant to Morepath shown and everything
else cut out:

from setuptools import setup, find_packages

setup(name='myproject',
packages=find_packages(),
install_requires=[

'morepath'
],
entry_points={

'console_scripts': [
'myproject-start = myproject.run:run'
]

})

1.15. Organizing your Project 63

http://pythonhosted.org/an_example_pypi_project/setuptools.html

Morepath Documentation, Release 0.13.2

This setup.py assumes you also have a myproject subdirectory in your project directory that is a Python package,
i.e. it contains an __init__.py. This is the directory where you put your code. The find_packages() call
finds it for you.

The install_requires section declares the dependency on Morepath. Doing this makes everybody who installs
your project automatically also pull in a release of Morepath and its own dependencies. In addition, it lets this package
be found and configured when you use morepath.autosetup().

Finally there is an entry_points section that declares a console script (something you can run on the command-
prompt of your operating system). When you install this project, a myproject-start script is automatically
generated that you can use to start up the web server. It calls the run() function in the myproject.run module.
Let’s create this next.

You now need to install this project. If you want to install this project for development purposes you can use python
setup.py develop, or pip install -e . from within a virtualenv.

See also the setuptools documentation.

1.15.5 Project naming

Its possible to name your project differently than you name your Python package; you could for instance have the name
ThisProject in setup.py, and then have your Python package be still called myproject. We recommend
naming the project the same as the Python package to avoid confusion.

1.15.6 Namespace packages

Sometimes you have projects that are grouped in some way: they are all created by the same organization or they
are part of the same larger project. In that case you can use Python namespace packages to make this relationship
clear. Let’s say you have a larger project called myproject. The namespace package itself may not contain any
code, so unlike the example everywhere else in this document the myproject directory is always empty but for a
__init__.py.

Different sub-projects could then be called myproject.core, myproject.wiki, etc. Let’s examine the files
and directories of myproject.core:

myproject.core
setup.py
myproject

__init__.py
core

__init__.py
app.py
model.py
[collection.py]
path.py
run.py
view.py

The change is the namespace package directory myproject that contains a single file, __init__.py, that contains
the following code to declare it is a namespace package:

__import__('pkg_resources').declare_namespace(__name__)

Inside is the normal package called core.

setup.py is modified too to include a declaration in namespace_packages, and we’ve changed the entry point:

64 Chapter 1. Table of Contents

https://pythonhosted.org/setuptools/

Morepath Documentation, Release 0.13.2

setup(name='myproject.core',
packages=find_packages(),
namespace_packages=['myproject'],
install_requires=[

'morepath'
],
entry_points={

'console_scripts': [
'myproject.core-start = myproject.core.run:run'
]

})

See also the namespace packages documentation.

1.15.7 App Module

The app.py module is where we define our Morepath app. Here’s a sketch of app.py:

import morepath

class App(morepath.App):
pass

1.15.8 Run Module

Why we keep app.py and run.py separate

Morepath attaches a configuration registry to each application class. This can happen twice if we run the run
function directly from python (through use of __main__). By keeping the application from the run code we
can be sure that this never happens.

In the run.py module we define how our application should be served. We take the App class defined in app.py,
then have a run() function that is going to be called by the myproject-start entry point we defined in
setup.py:

from .app import App

def run():
morepath.autosetup()
morepath.run(App())

This run function does two things:

• Use morepath.autosetup() to set up Morepath, including any of your code.

• start a WSGI server for the App instance on port localhost, port 5000. This uses the standard library wsgiref
WSGI server. Note that this should only used for testing purposes, not production! For production, use an
external WSGI server.

The run module is also a good place to do other general configuration for the application, such as setting up a database
connection.

1.15. Organizing your Project 65

http://pythonhosted.org/setuptools/setuptools.html#namespace-packages

Morepath Documentation, Release 0.13.2

1.15.9 Debugging scanning problems

If you for some reason get 404 Not Found errors where you expect some content, something may have gone wrong
with scanning the configuration of your project. Here’s a checklist:

• Check whether your project has a setup.py with an install_requires that depends on morepath
(possibly indirectly through another dependency). You need to declare your code as a project so that
autosetup can find it.

• Check whether your project is installed in a virtualenv using pip install -e . or in a buildout. Morepath
needs to be able to find your project in order to scan it.

• Be sure that you have your modules in an actual sub-directory to the project with its own __init__.py.
Modules in the top-level of a project won’t be scanned as a package

• Try manually scanning a package and see whether it works then:

import mysterious_package

morepath.scan(mysterious_package)
morepath.autosetup()

If this fixes things, the package is somehow not being picked up for automatic scanning. Check the package’s
setup.py.

• Try manually importing the modules before doing a morepath.autosetup() and see whether it works
then:

import mysterious_module

morepath.autosetup()

If this fixes things, then your own package is not being picked up as a Morepath package for some reason.

• Try moving Morepath directives into the module that also runs the application. If this works, your own package
is not recognized as a proper Morepath package.

Variation: automatic restart

During development it can be very helpful to have the WSGI server restart the Morepath app whenever a file is
changed.

Morepath’s built in development server does not offer this feature, but you can accomplish it with Werkzeug’s server.

First install the Werkzeug package into your project. Then modify your run module to look like this:

import morepath
from werkzeug.serving import run_simple
from .app import App

def run():
morepath.autosetup()
run_simple('localhost', 8080, App(), use_reloader=True)

Using this runner changes to Python code in your package trigger a restart of the WSGI server.

66 Chapter 1. Table of Contents

http://werkzeug.pocoo.org/docs/latest/serving/
https://pypi.python.org/pypi/Werkzeug

Morepath Documentation, Release 0.13.2

Variation: no or multiple entry points

Not all packages have an entry point to start it up: a framework app that isn’t intended to be run directly may not define
one. Some packages may define multiple apps and multiple entry points.

Variation: waitress

Instead of using Morepath’s simple built-in WSGI server you can use another WSGI server. The built-in WSGI server
is only meant for testing, so we strongly recommend doing so in production. Here’s how you’d use Waitress. First we
adjust setup.py so we also require waitress:
...

install_requires=[
'morepath',
'waitress'

],
...

Then we modify run.py to use waitress:

import waitress

...

def run():
...
waitress.serve(App())

Variation: command-line WSGI servers

You could also do away with the entry point and instead use waitress-serve on the command line directly. For
this we need to first create a factory function that returns the fully configured WSGI app:

def wsgi_factory():
morepath.autosetup()
return App()

$ waitress-serve --call myproject.run:wsgi_factory

This uses waitress’s --call functionality to invoke a WSGI factory instead of a WSGI function. If you want to use a
WSGI function directly we have to create one using the wsgi_factory function we just defined. To avoid circular
dependencies you should do it in a separate module that is only used for this purpose, say wsgi.py:

prepared_app = wsgi_factory()

You can then do:

$ waitress-serve myproject.wsgi:prepared_app

You can also use gunicorn this way:

$ gunicorn -w 4 myproject.wsgi:prepared_app

1.15. Organizing your Project 67

http://docs.pylonsproject.org/projects/waitress/en/latest/
http://gunicorn.org

Morepath Documentation, Release 0.13.2

1.15.10 Model module

The model.py module is where we define the models relevant to the web application. They may integrate with some
kind of database system, for instance the SQLAlchemy ORM. Note that your model code is completely independent
from Morepath and there is no reason to import anything Morepath related into this module. Here is an example
model.py that just uses plain Python classes:

class Document(object):
def __init__(self, id, title, content):

self.id = id
self.title = title
self.content = content

Variation: models elsewhere

Sometimes you don’t want to include model definitions in the same codebase that also implements a web application,
as you would like to reuse them outside of the web context without any dependencies on Morepath. Your model classes
are independent from Morepath, so this is easy to do: just put them in a separate project and depend on it from your
web project.

You can also have a project that reuses models defined by another Morepath project. Each Morepath app is isolated
from the others by default, so you could remix its models into a whole new web application.

Variation: collection module

An application tends to contain two kinds of models:

• content object models, i.e. a Document. If you use an ORM like SQLAlchemy these would typically be backed
by a table.

• collection models, i.e. a collection of documents. This typically let you browse content models, search/filter for
them, and let you add or remove them.

Since collection models tend to not be backed by a database directly but are often application-specific classes, it can
make sense to maintain them in a separate collection.py module. This module, like model.py also does not
have any dependencies on Morepath.

1.15.11 Path module

Now that we have models, we need to publish them on the web. First we need to define their paths. We do this in a
path.py module:

from .app import App
from . import model

@App.path(model=model.Document, path='documents/{id}')
def get_document(id):

if id != 'foo':
return None # not found

return Document('foo', 'Foo document', 'FOO!')

In the functions decorated by App.path() we do whatever query is necessary to retrieve the model instance from a
database, or return None if the model cannot be found.

Morepath allows you to scatter @App.path decorators throughout your codebase, but by putting them all together in
a single module it becomes really easy to inspect and adjust the URL structure of your application, and to see exactly

68 Chapter 1. Table of Contents

http://sqlalchemy.org

Morepath Documentation, Release 0.13.2

what is done to query or construct the model instances. Once it becomes really big you can always split a single path
module into multiple ones, though at that point you may want to consider splitting off a separate project with its own
application instead.

1.15.12 View module

We have models and they’re published on a path. Now we need to represent them as actual web resources. We do this
in the view.py module:

from .app import App
from . import model

@App.json(model=model.Document)
def document_default(self, request):

return {'id': self.id, 'title': self.title, 'content': self.content }

Here we use App.view(), App.json() and App.html() directives to declare views.

By putting them all in a view module it becomes easy to inspect and adjust how models are represented, but of course
if this becomes large it’s easy to split it into multiple modules.

1.15.13 Directive debugging

Morepath’s directive issue log messages that can help you debug your application: see Logging for more information.

1.16 Directive tricks

1.16. Directive tricks 69

Morepath Documentation, Release 0.13.2

Why not inside the class?

This in fact works:

class A(object):
@classmethod
@App.json(model=Foo)
def foo_default(self, request):

...

But it is equivalent to using @staticmethod, so there is no point to do this.
This is broken code:

class A(object):
@classmethod
@App.json(model=Foo)
def foo_default(cls, self, request):

...

This is broken because at the point foo_default is registered with App.json it isn’t a classmethod yet,
but a plain function, and it has the wrong signature to work with Morepath.
This is also broken code:

class A(object):
@App.json(model=Foo)
@classmethod
def foo_default(cls, self, request):

...

This is broken because what gets registered with Morepath is an unbound class method, which is not callable.
But if you do:

class A(object):
@classmethod
def foo_default(cls, self, request):

...

App.json(model=Foo)(A.foo_default)

it works as A.foo_default binds the cls argument first.

You usually use Morepath directives like decorators on functions:

@App.json(model=Foo)
def foo_default(self, request):

...

You can also use directives with @staticmethod:

class A(object):
@staticmethod
@App.json(model=Foo)
def foo_default(self, request):

...

It is important to apply @staticmethod directive after the Morepath directive is applied; it won’t work the other
away around.

With @classmethod the situation is slightly more involved. This is the correct way to do it:

class A(object):
@classmethod
def foo_default(cls, self, request):

70 Chapter 1. Table of Contents

Morepath Documentation, Release 0.13.2

...

App.json(model=Foo)(A.foo_default)

So, you apply the directive as a function to A.foo_default outside of the class.

This points to a general principle: we can use any Morepath directive as a plain function, not just as a decorator. This
means you can combine a directive with a lambda, which sometimes leads to shorter code:

App.template_directory()(lambda: 'templates')

This means you can also register functions programmatically:

for i, func in enumerate(functions):
App.json(model=Foo, name='view_%s' % i)(func)

We recommend caution here though – stick with the normal decorator based approach as much as you can as it is more
declarative. This tends to lead to more maintainable code.

1.17 Logging

1.17.1 Directive logging

Morepath has support for logging directive execution. This can be helpful when debugging why your Morepath
application does not do what was expected. Morepath’s directive logging makes use of Python’s logging module,
which is very flexible.

To get the complete log of directive executions, you can set up the following code in your project:

directive_logger = logging.getLogger('morepath.directive')
directive_logger.addHandler(logging.StreamHandler())
directive_logger.setLevel(logging.DEBUG)

The StreamHandler logs messages to stderr. You can reconfigure this or use another handler altogether. You
need to change the log level so that logging.DEBUG level messages are also shown, as Morepath’s directive logging
uses this log level.

You can also configure it to just see the output for one particular directive. To see all path directive executed in your
project you’d change the getLogger statement to this:

directive_logger = logging.getLogger('morepath.directive.path')

The Python logging module has many more options, but this should get you started.

1.18 App Reuse

Morepath is a microframework with a difference: it’s small and easy to learn like the others, but has special super
powers under the hood.

One of those super powers is Reg, which along with Morepath’s model/view separation makes it easy to write reusable
views. But here we’ll talk about another super power: Morepath’s application reuse facilities.

We’ll talk about how Morepath lets you isolate applications, extend and override applications, and compose applica-
tions together. Morepath makes this not only possible, but also simple.

1.17. Logging 71

https://docs.python.org/2/library/logging.html
http://blog.startifact.com/posts/reg-now-with-more-generic.html

Morepath Documentation, Release 0.13.2

Other web frameworks have mechanisms for overriding behavior and reusing code. But these were typically added in
an ad-hoc fashion as new needs arose.

Morepath instead has general mechanisms for app extension and reuse. Any normal Morepath app is reusable without
extra effort. Anything registered in a Morepath app can be overridden.

1.18.1 Application Isolation

Morepath lets you create app classes like this:

class App(morepath.App):
pass

When you instantiate the app class, you get a WSGI application. The app class itself serves as a registry for application
construction information. You specify this configuration with decorators. Apps consist of paths and views for models:

@App.path(model=User, path='users/{username}')
def get_user(username):

return query_for_user(username)

@App.view(model=User)
def render_user(self, request):

return "User: %s" % self.username

Here we’ve exposed the User model class under the path /users/{username}. When you go to such a URL,
Morepath looks up the default (unnamed) view. We’ve implemented that too: it renders “User: {username}”.

What now if we have another app where we want to publish User in a different way? No problem, we can create one:

class OtherApp(morepath.App):
pass

@OtherApp.path(model=User, path='different_path/{username}')
def get_user(username):

return different_query_for_user(username)

@OtherApp.view(model=User)
def render_user(self, request):

return "Differently Displayed User: %s" % self.username

Here we expose User to the web again, but use a different path and a different view. If you use OtherApp (even in
the same runtime), it functions independently from App.

App isolation is nothing special in Morepath; it’s obvious that this is possible. But that’s what we wanted. Let’s look
at some other features next.

1.18.2 Application Extension

Let’s look at our first application App again. It exposes a single view for users (the default view). What now if we
want to add a new functionality to this application so that we can edit users as well?

This is simple; we can add a new edit view to App:

@App.view(model=User, name='edit')
def edit_user(self, request):

return 'Edit user: %s' % self.username

72 Chapter 1. Table of Contents

Morepath Documentation, Release 0.13.2

The string we return here is of course useless for a real edit view, but you get the idea.

But what if we have a scenario where there is a core application and we want to extend it without modifying it?

Why would this ever happen, you may ask? In complex applications and reuse scenarios it does. Imagine you have a
common application core and you want to be able to plug into it. Meanwhile, you want that core application to still
function as before when used (or tested!) by itself. Perhaps there’s somebody else who has created another extension
of it.

In software engineering we call this architectural principle the Open/Closed Principle, and Morepath makes it easy to
follow it. What you do is create another app that subclasses the original:

class ExtendedApp(App):
pass

And then we can add the view to the extended app:

@ExtendedApp.view(model=User, name='edit')
def edit_user(self, request):

return 'Edit user: %s' % self.username

Now when we publish ExtendedApp using WSGI, the new edit view is there, but when we publish App it won’t
be.

Subclassing. Obvious, perhaps. Good! Let’s move on.

1.18.3 Application Overrides

Now we get to a more exciting example: overriding applications. What if instead of adding an extension to a core
application you want to override part of it? For instance, what if we want to change the default view for User?

Here’s how we can do that:

@ExtendedApp.view(model=User)
def render_user_differently(self, request):

return 'Different view for user: %s' % self.username

We’ve now overridden the default view for User to a new view that renders it differently.

We can also do this for model paths. Here we return a different user object altogether in our overriding app:

@ExtendedApp.path(model=OtherUser, path='users/{username}')
def get_user_differently(username):

return OtherUser(username)

To publish OtherUser under /users/{username} it either needs to be a subclass of User. We’ve already
registered a default view for that class. We can also register a new default view for OtherUser.

Overriding apps actually doesn’t look much different from how you build apps in the first place. Again, it’s just
subclassing. Hopefully this isn’t getting boring, so let’s talk about something new.

1.18.4 Nesting Applications

Let’s talk about application composition: nesting one app in another.

Imagine our user app allows users to have a wiki associated with them. It has paths like
/users/faassen/wiki/my_wiki_page and /users/bob/wiki/page_on_things.

We could implement this directly in the user app along these lines:

1.18. App Reuse 73

https://en.wikipedia.org/wiki/Open/closed_principle

Morepath Documentation, Release 0.13.2

def wiki_for_user(username):
wiki_id = get_wiki_id_for_username(username)
return get_wiki(wiki_id)

@App.path(model=WikiPage, path='users/{username}/wiki/{page_id}')
def get_wiki_page(username, page_id):

return wiki_for_user(username).get_page(page_id)

@App.view(model=WikiPage)
def wiki_page_default(self, request):

return "Wiki Page"

To understand this app, we need to describe a hypothetical Wiki class first. We can get an instance of it from some
database by using get_wikiwith a wiki id. It has a get_pagemethod for getting access to wiki page objects (class
WikiPage). We also have a way to determine the wiki id for a given username, get_wiki_id_for_username.

This application makes available wiki pages on a sub-URL for users, and then supplies a default view for them so we
see something when we go to the page.

There are some issues with this implementation, though:

• Why would we implement a wiki as part of our user app? Our wiki application should really be an app by itself,
that we can use by itself and also test by itself.

• The username appears in the path for the WikiPage model. The same would apply to any other wiki related
models (like the wiki root). Why should we have to care about the username of a user when we expose a wiki
page?

• Related to this, what if we wanted to associate a wiki app with some other object such as a project, instead of a
user? It would be nice if we can use the wiki app in such other contexts as well, not just for users.

To deal with those issues, we can create a separate app for wikis that is only about wikis. So let’s do it. Here’s the
wiki app by itself:

class WikiApp(morepath.App):
def __init__(self, wiki_id):

self.wiki_id = wiki_id

@wiki_app.path(path='{page_id}', model=WikiPage)
def get_wiki(page_id, app):

return get_wiki(app.wiki_id).get_page(page_id)

@App.view(model=WikiPage)
def wiki_page_default(self, request):

return "Wiki Page"

Here we have a stand-alone wiki app. It needs a wiki_id to be instantiated:

app = WikiApp(3)

We could now use app as a WSGI application, but that only works for one wiki id at the time. What if we want to
associate the wiki with a user like we had before? We can accomplish this by mounting the wiki app into the user app,
like this:

def variables(app):
return dict(username=get_username_for_wiki_id(app.wiki_id))

@App.mount(app=WikiApp, path='users/{username}/wiki',
variables=variables)

74 Chapter 1. Table of Contents

Morepath Documentation, Release 0.13.2

def mount_wiki(username):
return WikiApp(get_wiki_id_for_username(username))

Note that in order to be able to link to WikiApp we need to supply a special variables function that takes the wiki
app and returns the username for it. For more details, see the documentation for the morepath.App.mount()
directive.

1.18.5 Linking to other mounted apps

Reusing views from other applications

Just like morepath.Request.link(), morepath.Request.view() also takes an app parameter.
This allows you to reuse a view from another application.

Now that we have applications mounted into each other, we want a way to make links between them.

It is easy to make a link to an object in the same application. We use morepath.Request.link():

wiki_page = get_wiki(3).get_page('my_page')

request.link(wiki_page)

This works to create links to wiki pages from within the wiki app. But what if we want to link to a wiki page from
outside the wiki app, for instance from the user app?

To do this, we need not only the wiki page, but also a reference to the specific mounted application the wiki page is in.
We can get this by navigating to it from the user app.

If we are in the user application, we can navigate to the mounted wiki app using the morepath.App.child()
method:

wiki_app = request.app.child(WikiApp(3))

What if we want to navigate with the username under which it was mounted instead? We can do this too. We give
child the WikiApp class and then the username as a keyword argument:

wiki_app = request.app.child(WikiApp, username='faassen')

There is one more alternative. We can also refer to WikiApp with the name under which it was mounted (the path
by default):

wiki_app = request.app.child('users/{username}/wiki', username='faassen')

We can now use wiki_app to make the link from the username app to a wiki page in the wiki app:

request.link(wiki_page, app=wiki_app)

What if we wanted to create a link from the wiki app into the user app in which it was mounted? We get to the user
app from the wiki app with morepath.App.parent:

request.link(User('faassen'), app=request.app.parent)

For a quick navigation to a sibling app, there is also morepath.App.sibling(). To quickly get to the root app,
use morepath.App.root. You can also combine parent and child together to navigate the application tree.

1.18. App Reuse 75

Morepath Documentation, Release 0.13.2

1.18.6 Deferring links and views

If we have a lot of code that links to objects in another app, it can get cumbersome to have to add
the app parameter whenever we want to create a view. Instead, we can declare this centrally with the
morepath.App.defer_links() directive.

We can for instance declare for the WikiApp that to link to a User object we always use the parent app we were
mounted in:

@WikiApp.defer_links(model=User)
def defer_user(app, obj):

return app.parent

You can also use it to defer to a child app. If the WikiPage model provides a way to obtain the wiki_id for it, we
can use that information to determine what mounted WikiApp we need to link to:

@App.defer_links(model=WikiPage)
def defer_wiki_page(app, obj):

return app.child(WikiApp(obj.wiki_id))

You can defer links across multiple applications – a wiki app may defer objects it does not know how to link to to the
app it is mounted to, and then this app could defer to another sub-app. When creating a link Morepath follows the
defers to the application that knows how to do it.

The morepath.App.defer_links() directive also affects the behavior of morepath.Request.view()
in the same way. It does however not affect morepath.Request.class_link(), as without the instance,
insufficient information is available to defer the link.

1.18.7 Further reading

To see an extended example of how you can structure larger applications to support reuse, see Building Large Appli-
cations.

1.19 Building Large Applications

1.19.1 Introduction

A small web application is relatively easy to understand. It does less stuff. That makes the application easier to
understand: the UI (or REST web service) is smaller, and the codebase too.

But sometimes we need larger web applications. Morepath offers a number of facilities to help you manage the
complexity of larger web applications:

• Morepath lets you build larger applications from multiple smaller ones. A CMS may for instance be composed
of a document management application and a user management application. This is much like how you manage
complexity in a codebase by decomposing it into smaller functions and classes.

• Morepath lets you factor out common, reusable functionality. In other words, Morepath helps you build frame-
works, not just end-user applications. For instance, you may have multiple places in an application where you
need to represent a large result-set in smaller batches (with previous/next), and they should share common code.

There is also the case of reusable applications. Larger applications are often deployed multiple times. An open source
CMS is a good example: different organizations each have their own installation. Or imagine a company with an
application that it sells to its customers: each customer can have its own special deployment.

76 Chapter 1. Table of Contents

Morepath Documentation, Release 0.13.2

Different deployments of an application have real differences as every organization has different requirements. This
means that you need to be able to customize and extend the application to fit the purposes of each particular de-
ployment. As a result the application has to take on framework-like properties. Morepath recognizes that there is
a large gray area between application and framework, and offers support to build framework-like applications and
application-like frameworks.

The document doc:app_reuse describes the basic facilities Morepath offers for application reuse. The document
Organizing your Project describes how a single application project can be organized, and we will follow its guidelines
in this document.

This document sketches out an example of a larger application that consists of multiple sub-projects and sub-apps, and
that needs customization.

1.19.2 A Code Hosting Site

Our example large application is a code hosting site along the lines of Github or Bitbucket. This example is a sketch,
not a complete working application. We focus on the structure of the application as opposed to the details of the UI.

Let’s examine the URL structure of a code hosting site. Our hypothetical code hosting site lives on example.com:

example.com

A user (or organization) has a URL directly under the root with the user name or organization name included:

example.com/faassen

Under this URL we can find repositories, using the project name in the URL:

example.com/faassen/myproject

We can interact with repository settings on this URL:

example.com/faassen/myproject/settings

We also have a per-repository issue tracker:

example.com/faassen/myproject/issues

And a per-repository wiki:

example.com/faassen/myproject/wiki

1.19.3 Simplest approach

The simplest approach to make this URL structure work is to implement all paths in a single application, like this:

from .model import Root, User, Repository, Settings, Issues, Wiki

class App(morepath.App):
pass

@App.path(path='', model=Root)
def get_root():

...

@App.path(path='{user_name}', model=User)
def get_user(user_name):

...

1.19. Building Large Applications 77

Morepath Documentation, Release 0.13.2

@App.path(path='{user_name}/{repository_name}', model=Repository)
def get_repository(user_name, repository_name):

...

We could try to implement settings, issues and wiki as views on repository, but these are complicated pieces of
functionality that benefit from having sub-URLs (i.e. issues/12 or ...wiki/mypage), so we model them using
paths as well:

@App.path(path='{user_name}/{repository_name}/settings', model=Settings)
def get_settings(user_name, repository_name):

...

@App.path(path='{user_name}/{repository_name}/issues', model=Issues)
def get_issues(user_name, repository_name):

...

@App.path(path='{user_name}/{repository_name}/wiki', model=Wiki)
def get_wiki(user_name, repository_name):

...

Let’s also make a path to an individual issue, i.e. example.com/faassen/myproject/issues/12:

from .model import Issue

@App.path(path='{user_name}/{repository_name}/issues/{issue_id}', model=Issue)
def get_issue(user, repository, issue_id):

...

1.19.4 Problems

This approach works perfectly well, and it’s often the right way to start, but there are some problems with it:

• The URL patterns in the path are repetitive; for each sub-model under the repository we keep having to repeat
‘{user_name}/{repository_name}‘.

• We may want to be able to test the wiki or issue tracker during development without having to worry about
setting up the whole outer application.

• We may want to reuse the wiki application elsewhere, or in multiple places in the same larger application. But
user_name and repository_name are now hardcoded in the way to get any sub-path into the wiki.

• We could have different teams developing the core app and the wiki (and issue tracker, etc). It would be nice to
partition the code so that the wiki developers don’t need to look at the core app code and vice versa.

• You may want the abilitity to swap in new implementations of a issue tracker or a wiki under the same paths,
without having to change a lot of code.

We’re going to show how Morepath can solve these problems by partitioning a larger app into smaller ones, and
mounting them.

The code to accomplish this is more involved than simply declaring all paths under a single core app as we did before.
If you feel more comfortable doing that, by all means do so; you don’t have these problems. But if your application is
successful and grows larger you may encounter these problems, and these features are then there to help.

1.19.5 Multiple sub-apps

Let’s split up the larger app into multiple sub apps. How many sub-apps do we need? We could go and partition
things up into many sub-applications, but that risks getting lost in another kind of complexity. So let’s start with three

78 Chapter 1. Table of Contents

Morepath Documentation, Release 0.13.2

application:

• core app, everything up to repository, and including settings.

• issue tracker app.

• wiki sub app.

In code:

class CoreApp(morepath.App):
pass

class IssuesApp(morepath.App):
def __init__(self, issues_id):

self.issues_id = issues_id

class WikiApp(morepath.App):
def __init__(self, wiki_id):

self.wiki_id = wiki_id

Note that IssuesApp and WikiApp expect arguments to be initialized; we’ll learn more about this later.

We now can group our paths into three. First we have the core app, which includes the repository and its settings:

@CoreApp.path(path='', model=Root)
def get_root():

...

@CoreApp.path(path='{user_name}', model=User)
def get_user(user_name):

...

@CoreApp.path(path='{user_name}/{repository_name}', model=Repository)
def get_repository(user_name, repository_name):

...

@CoreApp.path(path='{user_name}/{repository_name}/settings', model=Settings)
def get_settings(user_name, repository_name):

...

Then we have the paths for our issue tracker:

@IssuesApp.path(path='', model=Issues)
def get_issues():

...

@IssuesApp.path(path='{issue_id}', model=Issue)
def get_issue(issue_id):

...

And the paths for our wiki:

@WikiApp.path(path='', model=Wiki)
def get_wiki():

...

We have drastically simplified the paths in IssuesApp and WikiApp; we don’t deal with user_name and
repository_name anymore.

1.19. Building Large Applications 79

Morepath Documentation, Release 0.13.2

1.19.6 Mounting apps

Now that we have an independent IssuesApp and WikiApp, we want to be able to mount these under the right
URLs under CoreApp. We do this using the mount directive:

def variables(app):
repository = get_repository_for_wiki_id(app.wiki_id)
return dict(

repository_name=repository.name,
user_name=repository.user.name)

@CoreApp.mount(path='{user_name}/{repository_name}/issues',
app=IssuesApp, variables=variables)

def mount_issues(user_name, repository_name):
return IssuesApp(issues_id=get_issues_id(user_name, repository_name))

Let’s look at what this does:

• @CoreApp.mount: We mount something onto CoreApp.

• path=’{user_name}/{repository_name}/issues’: We are mounting it on that path. All sub-
paths in the issue tracker app will fall under it.

• app=IssuesApp: We are mounting IssuesApp.

• The mount_issues function takes the path variables user_name and repository_name as arguments.
It then returns an instance of the IssuesApp. To create one we need to convert the user_name and
repository_name into an issues id. We do this by looking it up in some kind of database.

• The variables function needs to do the inverse: given a WikiApp instance it needs to translate this back
into a repository_name and user_name. This allows Morepath to link to a mounted WikiApp.

Mounting the wiki is very similar:

def variables(app):
return dict(user_name=get_username_for_wiki_id(app.id))

@CoreApp.mount(path='{user_name}/{repository_name}/wiki',
app=WikiApp, variables=variables)

def mount_wiki(user_name, repository_name):
return WikiApp(get_wiki_id(user_name, repository_name))

1.19.7 No more path repetition

We have solved the repetition of paths issue now; the issue tracker and wiki handle many paths, but there is no more
need to repeat ‘{user_name}/{repository_name}’ everywhere.

1.19.8 Testing in isolation

To test the issue tracker by itself, we can run it as a separate WSGI app:

def run_issue_tracker():
mounted = IssuesApp(4)
morepath.run(mounted)

Here we mount and run the issues_app with issue tracker id 4.

You can hook the run_issue_tracker function up to a script by using an entry point in setup.py as we’ve
seen in Organizing your Project.

80 Chapter 1. Table of Contents

Morepath Documentation, Release 0.13.2

You can also mount applications this way in automated tests and then use WebTest or some other WSGI testing library.

1.19.9 Reusing an app

We can now reuse the issue tracker app in the sense that we can mount it in different apps; all we need is a way to get
issues_id. What then if we have another Python project and we wanted to reuse the issue tracker in it as well? In
that case it may start sense to start maintaining the issue tracker it in a separate Python project of its own.

We could for instance split our code into three separate Python projects, for instance:

• myproject.core

• myproject.issues

• myproject.wiki

Each would be organized as described in Organizing your Project.

myproject.core could have an install_requires in its setup.py that depends on
myproject.issues and myproject.wiki. To get IssuesApp and WikiApp in order to mount them
in the core, we would simply import them (for instance in myproject.core.app):

from myproject.issues.app import IssuesApp
from myproject.wiki.app import WikiApp

In some scenarios you may want to turn this around: the IssuesApp and WikiApp know they should be mounted in
CoreApp, but the CoreApp wants to remain innocent of this. In that case, you would have myproject.issues
and myproject.wiki both depend on myproject.core, whereas myproject.core depends on nothing.
The wiki and issues projects then mount themselves into the core app.

1.19.10 Different teams

Now that we have separate projects for the core, issue tracker and wiki, it becomes possible for a team to focus on the
wiki without having to worry about core or the issue tracker and vice versa.

This may in fact be of benefit even when you alone are working on all three projects! When developing software it is
important to free up your brain so you only have to worry about one detail at the time: this an important reason why
we decomposition logic into functions and classes. By decomposing the project into three independent ones, you can
temporarily forget about the core when you’re working on the issue tracker, allowing you to focus on the problems at
hand.

1.19.11 Swapping in a new sub-app

Perhaps a different, better wiki implementation is developed. Let’s call it ShinyNewWikiApp. Swapping in the new
sub application is easy: it’s just a matter of changing the mount directive:

@CoreApp.mount(path='{user_name}/{repository_name}/wiki',
app=ShinyNewWikiApp, variables=variables)

def mount_wiki(user_name, repository_name):
return ShinyNewWikiApp(get_wiki_id(user_name, repository_name))

1.19.12 Customizing an app

Let’s change gears and talk about customization now.

1.19. Building Large Applications 81

http://webtest.readthedocs.org/

Morepath Documentation, Release 0.13.2

Imagine a scenario where a particular customer wants exactly core app. Really, it’s perfect, exactly what they need, no
change needed, but then ... wait for it ... they actually do need a minor tweak.

Let’s say they want an extra view on Repository that shows some important customer-specific metadata. This
metadata is retrieved from a customer-specific extra database, so we cannot just add it to core app. Besides, this new
view isn’t useful to other customers.

What we need to do is create a new customer specific core app in a separate project that is ex-
actly like the original core app by extending it, but with the one extra view added. Let’s call the
project important_customer.core. important_customer.core has an install_requires
in its setup.py that depends on myproject.core and also the customer database (which we call
customerdatabase in this example).

Now we can import CoreApp in important_customer.core‘s app.py module, and extend it:

from myproject.core.app import CoreApp

class CustomerApp(CoreApp):
pass

At this point CustomerApp and CoreApp have identical behavior. We can now make our customization and add a
new JSON view to Repository:

from myproject.core.model import Repository
customer specific database
from customerdatabase import query_metadata

@CustomerApp.json(model=Repository, name='customer_metadata')
def repository_customer_metadata(self, request):

metadata = query_metadata(self.id) # use repository id to find it
return {
'special_marketing_info': medata.marketing_info,
'internal_description': metadata.description

}

You can now run CustomerApp and get the core app with exactly the one tweak the customer wanted: a view
with the extra metadata. The important_customer.core project depends on customerdatabase, but
myproject.core remains unchanged.

We’ve made exactly the tweak necessary without having to modify our original project. The original project continues
to work the same way it always did.

1.19.13 Swapping in, for one customer

Morepath lets you extend any directive, not just the view directive. It also lets you override things in the applications
you extend. Let’s say the important customer wants exactly the original wiki, with just one tiny teeny little tweak.
Other customers should still continue to use the original wiki.

We’d tweak the wiki just as we would tweak the core app. We end up with a TweakedWikiApp:

from myproject.wiki.app import WikiApp

class TweakedWikiApp(WikiApp):
pass

some kind of tweak
@TweakedWikiApp.json(model=WikiPage, name='extra_info')
def page_extra_info(self, request):

...

82 Chapter 1. Table of Contents

Morepath Documentation, Release 0.13.2

We want a new version of CoreApp just for this customer that mounts TweakedWikiApp instead of WikiApp:

class ImportantCustomerApp(CoreApp):
pass

@ImportantCustomerApp.mount(path='{user_name}/{repository_name}/wiki',
app=TweakedWikiApp, variables=variables)

def mount_wiki(user_name, repository_name):
return TweakedWikiApp(get_wiki_id(user_name, repository_name))

The mount directive above overrides the one in the CoreApp that we’re extending, because it uses the same path
but mounts TweakedWikiApp instead.

1.19.14 Framework apps

A morepath.App subclass does not need to be a full working web application. Instead it can be a framework with
only those paths and views that we intend to be reusable.

We could for instance have a base class Metadata and define some views for it in the framework app. If we then
have an application that inherits from the framework app, any Metadata model we expose to the web using the
path directive automatically gets its views supplied by the framework.

For instance:

class Framework(morepath.App):
pass

class Metadata(object):
def __init__(self, d):

self.d = d # metadata dictionary

def get_metadata(self):
return self.d

@Framework.json(model=Metadata, name='metadata')
def metadata_view(self, request):

return self.get_metadata()

We want to use this framework in our own application:

class App(Framework):
pass

Let’s have a model that subclasses from Metadata:

class Document(Metadata):
...

Let’s put the model on a path:

@App.path(path='documents/{id}', model=Document)
def get_document(id):

...

Since App extends Framework, all documents published this way have a metadata view automatically. Apps that
don’t extend Framework won’t have this behavior, of course.

As we mentioned before, there is a gray area between application and framework; applications tend to gain attributes
of a framework, and larger frameworks start to look more like applications. Don’t worry too much about which is
which, but enjoy the creative possibilities!

1.19. Building Large Applications 83

Morepath Documentation, Release 0.13.2

Note that Morepath itself is designed as an application (morepath.App) that your apps extend. This means you can
override parts of it just like you would override a framework app! We did our best to make Morepath do the right thing
already, but if not, you can customize it.

1.20 Tweens

1.20.1 Introduction

Tweens are a light-weight framework component that sits between the web server and the app. It’s very similar to a
WSGI middleware, except that a tween has access to the Morepath API and is therefore less low-level.

Tweens can be used to implement transaction handling, logging, error handling and the like.

1.20.2 signature of a handler

Morepath has an internal publish function that takes a single morepath.Request argument, and returns a
morepath.Response as a result:

def publish(request):
...
return response

Tweens have the same signature.

We call such functions handlers.

1.20.3 Under and over

Given a handler, we can create a factory that creates a tween that wraps around it:

def make_tween(app, handler):
def my_tween(request):

print "Enter"
response = handler(request)
print "Exit"
return response

return my_tween

We say that my_tween is over the handler argument, and conversely that handler is under my_tween.

The application constructs a chain of tween over tween, ultimately reaching the request handler. Request come in in
the outermost tween and descend down the chain into the underlying tweens, and finally into the Morepath publish
handler itself.

1.20.4 What can a tween do?

A tween can:

• amend or replace the request before it goes in to the handler under it.

• amend or replace the response before it goes back out to the handler over it.

• inspect the request and completely take over response generation for some requests.

• catch and handle exceptions raised by the handler under it.

84 Chapter 1. Table of Contents

Morepath Documentation, Release 0.13.2

• do things before and after the request is handled: this can be logging, or commit or abort a database transaction.

1.20.5 Creating a tween factory

To have a tween, we need to add a tween factory to the app. The tween factory is a function that given a handler
constructs a tween. You can register a tween factory using the App.tween_factory() directive:

@App.tween_factory()
def make_tween(app, handler):

def my_tween(request):
print "Enter"
response = handler(request)
print "Exit"
return response

return my_tween

The tween chain is now:

my_tween -> publish

It can be useful to control the order of the tween chain. You can do this by passing under or over to tween_factory:

@App.tween_factory(over=make_tween)
def make_another_tween(app, handler):

def another_tween(request):
print "Another"
return handler(request)

return another_tween

The tween chain is now:

another_tween -> my_tween -> publish

If instead you used under:

@App.tween_factory(under=make_tween)
def make_another_tween(app, handler):

def another_tween(request):
print "Another"
return handler(request)

return another_tween

Then the tween chain is:

my_tween -> another_tween -> publish

1.20.6 Tweens and settings

A tween factory may need access to some application settings in order to construct its tweens. A logging tween for
instance needs access to a setting that indicates the path of the logfile.

The tween factory gets two arguments: the app and the handler. You can then access the app’s settings using
app.registry.settings. See also the Settings section.

1.20. Tweens 85

Morepath Documentation, Release 0.13.2

1.20.7 Tweens and apps

You can register different tween factories in different Morepath apps. A tween factory only has an effect when the app
under which it is registered is being run directly as a WSGI app. A tween factory has no effect if its app is mounted
under another app. Only the tweens of the outer app are in effect at that point, and they are also in effect for any apps
mounted into it.

This means that if you install a logging tween in an app, and you run this app with a WSGI server, the logging takes
place for that app and any other app that may be mounted into it, directly or indirectly.

1.20.8 more.transaction

If you need to integrate SQLAlchemy or the ZODB into Morepath, Morepath offers a special app you can extend that
includes a transaction tween that interfaces with the transaction package. The morepath_sqlalchemy demo project
gives an example of what that looks like with SQLAlchemy.

1.21 Static resources with Morepath

1.21.1 Introduction

A modern client-side web application is built around JavaScript and CSS. A web server is responsible for serving these
and other types of static content such as images to the client.

Morepath does not include in itself a way to serve these static resources. Instead it leaves the task to other WSGI
components you can integrate with the Morepath WSGI component. Examples of such systems that can be integrated
through WSGI are BowerStatic, Fanstatic, Webassets, and webob.static.

Examples will focus on BowerStatic integration to demonstrate a method for serving JavaScript and CSS. To demon-
strate a method for serving other static resources such as an image we will use webob.static.

We recommend you read the BowerStatic documentation, but we provide a small example of how to integrate it here
that should help you get started. You can find all the example code in the github repo.

1.21.2 Application layout

To integrate BowerStatic with Morepath we can use the more.static extension.

First we need to include more.static as a dependency of our code in setup.py. Once it is installed, we can
create a Morepath application that subclasses from more.static.StaticApp to get its functionality:

from more.static import StaticApp

class App(StaticApp):
pass

We give it a simple HTML page on the root HTML that contains a <head> section in its HTML:

@App.path(path='/')
class Root(object):

pass

@App.html(model=Root)
def root_default(self, request):

86 Chapter 1. Table of Contents

https://pypi.python.org/pypi/transaction
https://github.com/morepath/morepath_sqlalchemy
http://bowerstatic.readthedocs.org
http://fanstatic.org
http://webassets.readthedocs.org/
http://webob.readthedocs.org/en/latest/modules/static.html
https://github.com/morepath/morepath_static
https://pypi.python.org/pypi/more.static

Morepath Documentation, Release 0.13.2

return ("<!DOCTYPE html><html><head></head><body>"
"jquery is inserted in the HTML source</body></html>")

It’s important to use @App.html as opposed to @App.view, as that sets the content-header to text/html, some-
thing that BowerStatic checks before it inserts any <link> or <script> tags. It’s also important to include a
<head> section, as that’s where BowerStatic includes the static resources by default.

The app configuration code we store in the app.py module of the Python package.

In the run.py module of the Python package we set up a run() function that when run serves the WSGI application
to the web:

from .app import App

def run():
morepath.autosetup()
wsgi = App()
morepath.run(wsgi)

1.21.3 Manual scan

We recommend you use morepath.autosetup to make sure that all code that uses Morepath is automati-
cally scanned. If you do not use autosetup but use manual morepath.scan() instead, you need to scan
more.static explicitly, like this:

import more.static

def run():
morepath.scan(more.static)
morepath.autocommit()
wsgi = App()
morepath.run(wsgi)

1.21.4 Bower

BowerStatic integrates the Bower JavaScript package manager with a Python WSGI application such as Morepath.

Once you have bower installed, go to your Python package directory (where the app.py lives), and install a Bower
component. Let’s take jquery:

bower install jquery

You should now see a bower_components subdirectory in your Python package. We placed it here so that when
we distribute the Python package that contains our application, the needed bower components are automatically in-
cluded in the package archive. You could place bower_components elsewhere however and manage its contents
separately.

1.21.5 Registering bower_components

BowerStatic needs a single global bower object that you can register multiple bower_components directories
against. Let’s create it first:

bower = bowerstatic.Bower()

We now tell that bower object about our bower_component directory:

1.21. Static resources with Morepath 87

http://bowerstatic.readthedocs.org
http://bower.io

Morepath Documentation, Release 0.13.2

components = bower.components(
'app', os.path.join(os.path.dirname(__file__), 'bower_components'))

The first argument to bower.components is the name under which we want to publish them. We just pick app.
The second argument specifies the path to the bower.components directory. The os.path business here is a
way to make sure that we get the bower_components next to this module (app.py) in this Python package.

BowerStatic now lets you refer to files in the packages in bower_components to include them on the web, and
also makes sure they are available.

1.21.6 Saying which components to use

We now need to tell our application to use the components object. This causes it to look for static resources only in
the components installed there. We do this using the @App.static_components directive, like this:

@App.static_components()
def get_static_components():

return components

You could have another application that use another components object, or share this components with the other
application. Each app can only have a single components registered to it, though.

The static_components directive is not part of standard Morepath. Instead it is part of the more.static
extension, which we enabled before by subclassing from StaticApp.

1.21.7 Including stuff

Now we are ready to include static resources from bower_components into our application. We can do this using
the include() method on request. We modify our view to add an include() call:

@App.html(model=Root)
def root_default(self, request):

request.include('jquery')
return ("<!DOCTYPE html><html><head></head><body>"

"jquery is inserted in the HTML source</body></html>")

When we now open the view in our web browser and check its source, we can see it includes the jquery we installed
in bower_components.

Note that just like the static_components directive, the include() method is not part of standard Morepath,
but has been installed by the more.static.StaticApp base class as well.

1.21.8 Local components

In many projects we want to develop our own client-side JS or CSS code, not just rely on other people’s code. We can
do this by using local components. First we need to wrap the existing components in an object that allows us to add
local ones:

local = bower.local_components('local', components)

We can now add our own local components. A local component is a directory that needs a bower.json in it. You
can create a bower.json file most easily by going into the directory and using bower init command:

$ mkdir my_component
$ cd my_component
$ bower init

88 Chapter 1. Table of Contents

Morepath Documentation, Release 0.13.2

You can edit the generated bower.json further, for instance to specify dependencies. You now have a bower
component. You can add any static files you are developing into this directory.

Now you need to tell the local components object about it:

local.component('/path/to/my_component', version=None)

See the BowerStatic local component documentation for more of what you can do with version – it’s clever about
automatically busting the cache when you change things.

You need to tell your application that instead of plain components you want to use local instead, so we modify
our static_components directive:

@App.static_components()
def get_static_components():

return local

When you now use request.include(), you can include local components by their name (as in bower.json)
as well:

request.include('my_component')

It automatically pulls in any dependencies declared in bower.json too.

As mentioned before, check the morepath_static github repo for the complete example.

1.21.9 A note about mounted applications

more.static uses a tween to inject scripts into the response (see Tweens). If you use more.static in a view in a
mounted application, you need to make sure that the root application also derives from more.static.StaticApp,
otherwise the resources aren’t inserted correctly:

from more.static import StaticApp

class App(StaticApp): # this needs to subclass StaticApp too
pass

class Mounted(StaticApp):
pass

@App.mount(app=Mounted, path='mounted')
def mount():

return Mounted()

1.21.10 Other static content

In essence, Morepath doesn’t enforce any particular method for serving static content to the client as long as the
content eventually ends up in the response object returned. Therefore, there are different approaches to serving static
content.

Since a Morepath view returns a WebOb response object, that object can be loaded with any type of binary content in
the body along with the necessary HTTP headers to describe the content type and size.

In this example, we use a WebOb helper class webob.static.FileApp to serve a PNG image:

from webob import static

@App.path(path='')

1.21. Static resources with Morepath 89

http://bowerstatic.readthedocs.org/en/latest/local.html
https://github.com/morepath/morepath_static
http://webob.readthedocs.org/en/latest/modules/static.html#webob.static.FileApp

Morepath Documentation, Release 0.13.2

class Image(object):
path = 'image.png'

@App.view(model=Image)
def view_image(self, request):

return request.get_response(static.FileApp(self.path))

In the above example FileApp does the heavy lifting by opening the file, guessing the MIME type, updating the
headers, and returning the response object which is in-turn returned by the Morepath view. Note that the same helper
class can be used to to serve most types of MIME content.

This example is one way to serve an image, but it is not the only way. In cases that require a more elaborate method
for serving the content this WebOb File-Serving Example may be helpful.

1.22 API

class morepath.App
A Morepath-based application object.

You subclass App to create a morepath application class. You can then configure this class using Morepath
decorator directives.

An application can extend one or more other applications, if desired, by subclassing them. By subclassing App
itself, you get the base configuration of the Morepath framework itself.

Conflicting configuration within an app is automatically rejected. An subclass app cannot conflict with the apps
it is subclassing however; instead configuration is overridden.

You can turn your app class into a WSGI application by instantiating it. You can then call it with the environ
and start_response arguments.

Subclasses from dectate.App, which provides the dectate.App.directive() decorator that lets you
register new directives.

request_class
The class of the Request to create. Must be a subclass of morepath.Request.

alias of Request

classmethod converter(type)
Register custom converter for type.

Parameters type – the Python type for which to register the converter. Morepath uses convert-
ers when converting path variables and URL parameters when decoding or encoding URLs.
Morepath looks up the converter using the type. The type is either given explicitly as the
value in the converters dictionary in the morepath.App.path() directive, or is de-
duced from the value of the default argument of the decorated model function or class using
type().

classmethod defer_links(model)
Defer link generation for model to mounted app.

With defer_links you can specify that link generation for instances of model is to be handled
by a returned mounted app if it cannot be handled by the given app itself. Request.link() and
Request.view() are affected by this directive.

The decorated function gets an instance of the application and object to link to. It should return another
application that it knows can create links for this object. The function uses navigation methods on App to
do so like App.parent() and App.child().

90 Chapter 1. Table of Contents

http://webob.readthedocs.org/en/latest/file-example.html
http://dectate.readthedocs.org/en/latest/api.html#dectate.App
http://dectate.readthedocs.org/en/latest/api.html#dectate.App.directive

Morepath Documentation, Release 0.13.2

Parameters model – the class for which we want to defer linking.

classmethod dump_json(model=<type ‘object’>)
Register a function that converts model to JSON.

The decorated function gets self (model instance) and request (morepath.Request) parameters.
The function should return an JSON object. That is, a Python object that can be dumped to a JSON string
using json.dump.

Parameters model – the class of the model for which this function is registered. The self
passed into the function is an instance of the model (or of a subclass). By default the model
is object, meaning we register a function for all model classes.

classmethod function(func, **kw)
Register function as implementation of generic dispatch function

The decorated function is an implementation of the generic function supplied to the decorator. This way
you can override parts of the Morepath framework, or create new hookable functions of your own.

The func argument is a generic dispatch function, so a Python function marked with app.dispatch()
or app.predicate_dispatch().

Parameters

• func (dispatch function object) – the generic function to register an imple-
mentation for.

• kw – keyword parameters with the predicate keys to register for. Argument names are
predicate names, values are the predicate values to match on.

classmethod html(model, render=None, template=None, permission=None, internal=False, **predi-
cates)

Register HTML view.

This is like morepath.App.view(), but with morepath.render_html() as default for the ren-
der function.

Sets the content type to text/html.

Parameters

• model – the class of the model for which this view is registered.

• name – the name of the view as it appears in the URL. If omitted, it is the empty string,
meaning the default view for the model.

• render – an optional function that can render the output of the view function to a re-
sponse, and possibly set headers such as Content-Type, etc. Renders as HTML by
default. This function takes self and request parameters as input.

• template – a path to a template file. The path is relative to the directory this module is
in. The template is applied to the content returned from the decorated view function.

Use the morepath.App.template_engine() directive to define support for new
template engines.

• permission – a permission class. The model should have this permission, otherwise
access to this view is forbidden. If omitted, the view function is public.

• internal – Whether this view is internal only. If True, the view is only useful pro-
grammatically using morepath.Request.view(), but will not be published on the
web. It will be as if the view is not there. By default a view is False, so not internal.

• name – the name of the view as it appears in the URL. If omitted, it is the empty string,
meaning the default view for the model. This is a predicate.

1.22. API 91

Morepath Documentation, Release 0.13.2

• request_method – the request method to which this view should answer, i.e. GET,
POST, etc. If omitted, this view will respond to GET requests only. This is a predicate.

• predicates – predicates to match this view on. See the documentation of
App.view() for more information.

classmethod identity_policy()
Register identity policy.

The decorated function should return an instance of morepath.security.IdentityPolicy . Ei-
ther use an identity policy provided by a library or implement your own.

It gets one optional argument: the settings of the app for which this identity policy is in use. So you can
pass some settings directly to the IdentityPolicy class.

classmethod json(model, render=None, template=None, permission=None, internal=False, **predi-
cates)

Register JSON view.

This is like morepath.App.view(), but with morepath.render_json() as default for the ren-
der function.

Transforms the view output to JSON and sets the content type to application/json.

Parameters

• model – the class of the model for which this view is registered.

• name – the name of the view as it appears in the URL. If omitted, it is the empty string,
meaning the default view for the model.

• render – an optional function that can render the output of the view function to a re-
sponse, and possibly set headers such as Content-Type, etc. Renders as JSON by
default. This function takes self and request parameters as input.

• template – a path to a template file. The path is relative to the directory this module is
in. The template is applied to the content returned from the decorated view function.

Use the morepath.App.template_engine() directive to define support for new
template engines.

• permission – a permission class. The model should have this permission, otherwise
access to this view is forbidden. If omitted, the view function is public.

• internal – Whether this view is internal only. If True, the view is only useful pro-
grammatically using morepath.Request.view(), but will not be published on the
web. It will be as if the view is not there. By default a view is False, so not internal.

• name – the name of the view as it appears in the URL. If omitted, it is the empty string,
meaning the default view for the model. This is a predicate.

• request_method – the request method to which this view should answer, i.e. GET,
POST, etc. If omitted, this view will respond to GET requests only. This is a predicate.

• predicates – predicates to match this view on. See the documentation of
App.view() for more information.

classmethod link_prefix()
Register a function that returns the prefix added to every link generated by the request.

By default the link generated is based on webob.Request.application_url().

The decorated function gets the request (morepath.Request) as its only paremeter. The function
should return a string.

92 Chapter 1. Table of Contents

Morepath Documentation, Release 0.13.2

classmethod load_json()
Register a function that converts JSON to an object.

The decorated function gets json and request (morepath.Request) parameters. The function
should return a Python object based on the given JSON.

classmethod mount(path, app, variables=None, converters=None, required=None,
get_converters=None, name=None)

Mount sub application on path.

The decorated function gets the variables specified in path as parameters. It should return a new instance
of an application class.

Parameters

• path – the path to mount the application on.

• app – the morepath.App subclass to mount.

• variables – a function that given an app instance can construct the variables used in
the path (including any URL parameters). If omitted, variables are retrieved from the app
by using the arguments of the decorated function.

• converters – converters as for the morepath.App.path() directive.

• required – list or set of names of those URL parameters which should be required, i.e.
if missing a 400 Bad Request response is given. Any default value is ignored. Has no
effect on path variables. Optional.

• get_converters – a function that returns a converter dictionary. This function is
called once during configuration time. It can be used to programmatically supply convert-
ers. It is merged with the converters dictionary, if supplied. Optional.

• name – name of the mount. This name can be used with Request.child() to allow
loose coupling between mounting application and mounted application. Optional, and if
not supplied the path argument is taken as the name.

classmethod path(path, model=None, variables=None, converters=None, required=None,
get_converters=None, absorb=False)

Register a model for a path.

Decorate a function or a class (constructor). The function should return an instance of the model class, for
instance by querying it from the database, or None if the model does not exist.

The decorated function gets as arguments any variables specified in the path as well as URL parameters.

If you declare a request parameter the function is able to use that information too.

Parameters

• path – the route for which the model is registered.

• model – the class of the model that the decorated function should return. If the directive
is used on a class instead of a function, the model should not be provided.

• variables – a function that given a model object can construct the variables used in the
path (including any URL parameters). If omitted, variables are retrieved from the model
by using the arguments of the decorated function.

• converters – a dictionary containing converters for variables. The key is the variable
name, the value is a morepath.Converter instance.

• required – list or set of names of those URL parameters which should be required, i.e.
if missing a 400 Bad Request response is given. Any default value is ignored. Has no
effect on path variables. Optional.

1.22. API 93

Morepath Documentation, Release 0.13.2

• get_converters – a function that returns a converter dictionary. This function is
called once during configuration time. It can be used to programmatically supply convert-
ers. It is merged with the converters dictionary, if supplied. Optional.

• absorb – If set to True, matches any subpath that matches this path as well. This is
passed into the decorated function as the remaining variable.

classmethod permission_rule(model, permission, identity=<class ‘morepath.security.Identity’>)
Declare whether a model has a permission.

The decorated function receives model, permission‘ (instance of any permission object) and identity
(morepath.security.Identity) parameters. The decorated function should return True only if
the given identity exists and has that permission on the model.

Parameters

• model – the model class

• permission – permission class

• identity – identity class to check permission for. If None, the identity to check for is
the special morepath.security.NO_IDENTITY .

classmethod predicate(dispatch, name, default, index, before=None, after=None)
Register custom predicate for a predicate_dispatch function.

The function registered should have arguments that are the same or a subset of the arguments of the
predicate_dispatch function. From these arguments it should determine a predicate value and return it.
The predicates for a predicate_dispatch function are ordered by their before and after arguments.

You can then register a function to dispatch to using the App.function() directive. This takes the
predicate_dispatch or dispatch function as its first argument and the predicate key to match on as its other
arguments.

Parameters

• dispatch – the predicate_dispatch function this predicate is for.

• name – the name of the predicate. This is used when constructing a predicate key from a
predicate dictionary.

• default – the default value for a predicate, in case the value is missing in the predicate
dictionary.

• index – the index to use. Typically morepath.KeyIndex or morepath.ClassIndex.

• before – predicate function this function wants to have priority over.

• after – predicate function we want to have priority over this one.

classmethod predicate_fallback(dispatch, func)
For a given dispatch and function dispatched to, register fallback.

The fallback is called with the same arguments as the dispatch function. It should return a response (or
raise an exception that can be turned into a response).

Parameters

• dispatch – the dispatch function

• func – the registered function we are the fallback for

classmethod setting(section, name)
Register application setting.

94 Chapter 1. Table of Contents

Morepath Documentation, Release 0.13.2

An application setting is registered under the .config.settings_registry class attribute of
morepath.App‘ subclasses. It will be executed early in configuration so other configuration directives
can depend on the settings being there.

The decorated function returns the setting value when executed.

Parameters

• section – the name of the section the setting should go under.

• name – the name of the setting in its section.

classmethod setting_section(section)
Register application setting in a section.

An application settings are registered under the settings attribute of morepath.app.Registry.
It will be executed early in configuration so other configuration directives can depend on the settings being
there.

The decorated function returns a dictionary with as keys the setting names and as values the settings.

Parameters section – the name of the section the setting should go under.

classmethod template_directory(after=None, before=None, name=None)
Register template directory.

The decorated function gets no argument and should return a relative or absolute path to a directory con-
taining templates that can be loaded by this app. If a relative path, it is made absolute from the directory
this module is in.

Template directories can be ordered: templates in a directory before another one are found before tem-
plates in a directory after it. But you can leave both before and after out: template directories
defined in sub-applications automatically have a higher priority than those defined in base applications.

Parameters

• after – Template directory function this template directory function to be under. The
other template directory has a higher priority. You usually want to use over. Optional.

• before – Template directory function function this function should have priority over.
Optional.

• name – The name under which to register this template directory, so that it can be over-
ridden by applications that extend this one. If no name is supplied a default name is
generated.

classmethod template_loader(extension)
Create a template loader.

The decorated function gets a template_directories argument, which is a list of absolute paths to
directories that contain templates. It also gets a settings argument, which is application settings that
can be used to configure the loader.

It should return an object that can load the template given the list of template directories.

classmethod template_render(extension)
Register a template engine.

Parameters extension – the template file extension (.pt, etc) we want this template engine
to handle.

The decorated function gets loader, name and original_render arguments. It should return
a callable that is a view render function: take a content and request object and return a

1.22. API 95

Morepath Documentation, Release 0.13.2

morepath.Response instance. This render callable should render the return value of the view with
the template supplied through its template argument.

classmethod tween_factory(under=None, over=None, name=None)
Register tween factory.

The tween system allows the creation of lightweight middleware for Morepath that is aware of the request
and the application.

The decorated function is a tween factory. It should return a tween. It gets two arguments: the app for
which this tween is in use, and another tween that this tween can wrap.

A tween is a function that takes a request and a mounted application as arguments.

Tween factories can be set to be over or under each other to control the order in which the produced tweens
are wrapped.

Parameters

• under – This tween factory produces a tween that wants to be wrapped by the tween
produced by the under tween factory. Optional.

• over – This tween factory produces a tween that wants to wrap the tween produced by
the over tween factory. Optional.

• name – The name under which to register this tween factory, so that it can be overridden
by applications that extend this one. If no name is supplied a default name is generated.

classmethod verify_identity(identity=<type ‘object’>)
Verify claimed identity.

The decorated function gives a single identity argument which contains the claimed identity. It should
return True only if the identity can be verified with the system.

This is particularly useful with identity policies such as basic authentication and cookie-based authentica-
tion where the identity information (username/password) is repeatedly sent to the the server and needs to
be verified.

For some identity policies (auth tkt, session) this can always return True as the act of establishing the
identity means the identity is verified.

The default behavior is to always return False.

Parameters identity – identity class to verify. Optional.

classmethod view(model, render=None, template=None, permission=None, internal=False, **predi-
cates)

Register a view for a model.

The decorated function gets self (model instance) and request (morepath.Request) parameters.
The function should return either a (unicode) string that is the response body, or a morepath.Response
object.

If a specific render function is given the output of the function is passed to this first, and the function
could return whatever the render parameter expects as input. This function should take the object to
render and the request. func:morepath.render_json for instance expects as its first argument a Python
object such as a dict that can be serialized to JSON.

See also morepath.App.json() and morepath.App.html().

Parameters

• model – the class of the model for which this view is registered. The self passed into
the view function is an instance of the model (or of a subclass).

96 Chapter 1. Table of Contents

Morepath Documentation, Release 0.13.2

• render – an optional function that can render the output of the view function to a re-
sponse, and possibly set headers such as Content-Type, etc. This function takes self
and request parameters as input.

• template – a path to a template file. The path is relative to the directory this module is
in. The template is applied to the content returned from the decorated view function.

Use the morepath.App.template_loader() and
morepath.App.template_render() directives to define support for new
template engines.

• permission – a permission class. The model should have this permission, otherwise
access to this view is forbidden. If omitted, the view function is public.

• internal – Whether this view is internal only. If True, the view is only useful pro-
grammatically using morepath.Request.view(), but will not be published on the
web. It will be as if the view is not there. By default a view is False, so not internal.

• name – the name of the view as it appears in the URL. If omitted, it is the empty string,
meaning the default view for the model. This is a predicate.

• request_method – the request method to which this view should answer, i.e. GET,
POST, etc. If omitted, this view responds to GET requests only. This is a predicate.

• predicates – additional predicates to match this view on. You can install your own
using the morepath.App.predicate() directive.

ancestors()
Return iterable of all ancestors of this app.

Includes this app itself as the first ancestor, all the way up to the root app in the mount chain.

child(app, **variables)
Get app mounted in this app.

Either give it an instance of the app class as the first parameter, or the app class itself (or name under which
it was mounted) as the first parameter and as variables the parameters that go to its mount function.

Returns the mounted application object, with its parent attribute set to this app object, or None if this
application cannot be mounted in this one.

request(environ)
Create a Request given WSGI environment for this app.

Parameters environ – WSGI environment

Returns morepath.Request instance

sibling(app, **variables)
Get app mounted next to this app.

Either give it an instance of the app class as the first parameter, or the app class itself (or name under which
it was mounted) as the first parameter and as variables the parameters that go to its mount function.

Returns the mounted application object, with its parent attribute set to the same parent as this one, or
None if such a sibling application does not exist.

lookup
Get the reg.Lookup for this application.

Returns a reg.Lookup instance.

parent = None
The parent in which this app was mounted.

1.22. API 97

http://reg.readthedocs.org/en/latest/api.html#reg.Lookup
http://reg.readthedocs.org/en/latest/api.html#reg.Lookup

Morepath Documentation, Release 0.13.2

root
The root application.

settings
Returns the settings bound to this app.

Works the same way as morepath.generic.settings(). Unlike calling morepath.settings
however, this property does not rely on the global lookup. It’s simply a shortcut to
app.config.setting_registry.

morepath.scan(package=None, ignore=None, handle_error=None)
Scan package for configuration actions (decorators).

It scans by recursively importing the package and any modules in it, including any sub-packages.

Register any found directives with their app classes. It also makes a list of App subclasses that can be commited
using autocommit().

Parameters

• package – The Python module or package to scan. Optional; if left empty case the calling
package is scanned.

• ignore – A list of packages to ignore. Optional. Defaults to [’.test’, ’.tests’].
See importscan.scan() for details.

• handle_error – Optional error handling function. See importscan.scan() for
details.

morepath.autoscan(ignore=None)
Automatically load Morepath configuration from packages.

Morepath configuration consists of decorator calls on App instances, i.e. @App.view() and @App.path().

This function tries to load needed Morepath configuration from all packages automatically. This only works if:

•The package is made available using a setup.py file.

•The package or a dependency of the package includes morepath in the install_requires list of
the setup.py file.

•The setup.py name is the same as the name of the distributed package or module. For example: if the
module inside the package is named myapp the package must be named myapp as well (not my-app or
MyApp).

If the setup.py differs from the package name, it’s possible to specify the module morepath should scan using
entry points:

setup(name='some-package',
...
install_requires=[

'setuptools',
'morepath'

],
entry_points={

'morepath': [
'scan = somepackage',

]
})

This function simply recursively imports everything in those packages, except for test directories.

In addition to calling this function you can also import modules that use Morepath directives manually, and you
can use scan() to automatically import everything in a single package.

98 Chapter 1. Table of Contents

http://importscan.readthedocs.org/en/latest/index.html#importscan.scan
http://importscan.readthedocs.org/en/latest/index.html#importscan.scan

Morepath Documentation, Release 0.13.2

Typically called immediately after startup just before the application starts serving using WSGI.

autoscan always ignores .test and .tests sub-packages – these are assumed never to contain useful
Morepath configuration and are not scanned.

autoscan can fail with an ImportError when it tries to scan code that imports an optional dependency
that is not installed. This happens most commonly in test code, which often rely on test-only dependencies such
as pytest or nose. If those tests are in a .test or .tests sub-package they are automatically ignored,
however.

If you have a special package with such expected import errors, you can exclude them from autoscan using
the ignore argument, for instance using [’special_package’]. You then can use scan() for that
package, with a custom ignore argument that excludes the modules that generate import errors.

See also scan().

Parameters ignore – ignore to ignore some modules during scanning. Optional. If ommitted,
ignore .test and .tests packages by default. See importscan.scan() for more details.

morepath.autosetup(ignore=None)
Automatically scan and commit Morepath configuration.

As with autoconfig(), but also commits configuration. This can be your one-stop function to load all
Morepath configuration automatically.

Typically called immediately after startup just before the application starts serving using WSGI.

autosetup always ignores .test and .tests sub-packages – these are assumed never to contain useful
Morepath configuration and are not scanned.

autosetup can fail with an ImportError when it tries to scan code that imports an optional dependency
that is not installed. This happens most commonly in test code, which often rely on test-only dependencies such
as pytest or nose. If those tests are in a .test or .tests sub-package they are automatically ignored,
however.

If you have a special package with such expected import errors, you may be better off switching to
morepath.autoscan() with an ignore for this package, and then doing a manual scan() for that package
with the resulting config object. There you can add a custom ignore argument that excludes the modules that
generate import errors.

Parameters ignore – ignore to ignore some modules during scanning. Optional. If ommitted,
ignore .test and .tests packages by default. See importscan.scan() for more details.

morepath.commit(*apps)
Commit one or more app classes

A commit causes the configuration actions to be performed. The resulting configuration information is stored
under the .config class attribute of each App subclass supplied.

This function may safely be invoked multiple times – each time the known configuration is recommitted.

Parameters *apps – one or more App subclasses to perform configuration actions on.

morepath.autocommit()
Automatically commit all App subclasses.

Dectate keeps track of all App subclasses that have been imported. You can automatically commit configuration
for all of them.

morepath.run(wsgi, host=None, port=None)
Uses wsgiref.simple_server to run application for debugging purposes.

Don’t use this in production; use an external WSGI server instead, for instance Apache mod_wsgi, Nginx wsgi,
Waitress, Gunicorn.

1.22. API 99

http://importscan.readthedocs.org/en/latest/index.html#importscan.scan
http://importscan.readthedocs.org/en/latest/index.html#importscan.scan

Morepath Documentation, Release 0.13.2

Parameters

• wsgi – WSGI app.

• host – hostname.

• port – port.

morepath.settings()
Return current settings object.

In it are sections, and inside of the sections are the setting values. If there is a logging section and a
loglevel setting in it, this is how you would access it:

settings().logging.loglevel

morepath.redirect(location)
Return a response object that redirects to location.

class morepath.Request(environ, app, **kw)
Request.

Extends webob.request.BaseRequest

after(func)
Call a function with the response after a successful request.

A request is considered successful if the HTTP status is a 2XX or a 3XX code (e.g. 200 OK, 204 No
Content, 302 Found). In this case after is called.

A request is considered unsuccessful if the HTTP status lies outside the 2XX-3XX range (e.g. 403 Forbid-
den, 404 Not Found, 500 Internal Server Error). Usually this happens if an exception occurs. In this case
after is not called.

Some exceptions indicate a successful request however and their occurrence still leads to a call to after.
These exceptions inherit from either webob.exc.HTTPOk or webob.exc.HTTPRedirection.

You use request.after inside a view function definition.

It can be used explicitly:

@App.view(model=SomeModel)
def some_model_default(self, request):

def myfunc(response):
response.headers.add('blah', 'something')

request.after(my_func)

or as a decorator:

@App.view(model=SomeModel)
def some_model_default(self, request):

@request.after
def myfunc(response):

response.headers.add('blah', 'something')

Parameters func – callable that is called with response

Returns func argument, not wrapped

class_link(model, variables=None, name=’‘, app=<SAME_APP>)
Create a link (URL) to a view on a class.

100 Chapter 1. Table of Contents

http://docs.webob.org/en/latest/api/request.html#webob.request.BaseRequest
http://docs.webob.org/en/latest/api/exceptions.html#webob.exc.HTTPOk
http://docs.webob.org/en/latest/api/exceptions.html#webob.exc.HTTPRedirection

Morepath Documentation, Release 0.13.2

Given a model class and a variables dictionary, create a link based on the path registered for the class and
interpolate the variables.

If you have an instance of the model available you’d link to the model instead, but in some cases it is ex-
pensive to instantiate the model just to create a link. In this case class_link can be used as an optimization.

Note that the defer_links directive has no effect on class_link, as it needs an instance of the model to work,
which is not available.

If no link can be constructed for the model class, a :exc:morepath.LinkError is raised. This error is
also raised if you don’t supply enough variables. Additional variables not used in the path are interpreted
as URL parameters.

Parameters

• model – the model class to link to.

• variables – a dictionary with as keys the variable names, and as values the variable
values. These are used to construct the link URL. If omitted, the dictionary is treated as
containing no variables.

• name – the name of the view to link to. If omitted, the the default view is looked up.

• app – If set, change the application to which the link is made. By default the link is made
to an object in the current application. The defer_links directive has no effect.

link(obj, name=’‘, default=None, app=<SAME_APP>)
Create a link (URL) to a view on a model instance.

The resulting link is prefixed by the link prefix. By default this is the full URL based on the Host header.

You can configure the link prefix for an application using the morepath.App.link_prefix() di-
rective.

If no link can be constructed for the model instance, a :exc:morepath.LinkError is raised. None is
treated specially: if None is passed in the default value is returned.

Parameters

• obj – the model instance to link to, or None.

• name – the name of the view to link to. If omitted, the the default view is looked up.

• default – if None is passed in, the default value is returned. By default this is None.

• app – If set, change the application to which the link is made. By default the link is
made to an object in the current application. The defer_links directive can be used
to change the default app for all instances of a particular class (if this app doesn’t handle
them).

link_prefix()
Prefix to all links created by this request.

resolve_path(path, app=<SAME_APP>)
Resolve a path to a model instance.

The resulting object is a model instance, or None if the path could not be resolved.

Parameters

• path – URL path to resolve.

• app – If set, change the application in which the path is resolved. By default the path is
resolved in the current application.

Returns instance or None if no path could be resolved.

1.22. API 101

Morepath Documentation, Release 0.13.2

view(obj, default=None, app=<SAME_APP>, **predicates)
Call view for model instance.

This does not render the view, but calls the appropriate view function and returns its result.

Parameters

• obj – the model instance to call the view on.

• default – default value if view is not found.

• app – If set, change the application in which to look up the view. By default the view is
looked up for the current application. The defer_links directive can be used to change
the default app for all instances of a particular class.

• predicates – extra predicates to modify view lookup, such as name and
request_method. The default name is empty, so the default view is looked up, and the
default request_method is GET. If you introduce your own predicates you can specify
your own default.

app = None
The App object being handled by this request.

body_obj
JSON object, converted to an object.

You can use the App.load_json() directive to specify how to transform JSON to a Python object. By
default, no conversion takes place, and body_obj is identical to the json attribute.

identity
Self-proclaimed identity of the user.

The identity is established using the identity policy. Normally this would be an instance of
morepath.security.Identity .

If no identity is claimed or established, or if the identity is not verified by the application, the identity is
the the special value morepath.security.NO_IDENTITY .

The identity can be used for authentication/authorization of the user, using Morepath permission directives.

lookup = None
The reg.Lookup object handling generic function calls.

class morepath.Response(body=None, status=None, headerlist=None, app_iter=None, con-
tent_type=None, conditional_response=None, **kw)

Response.

Extends webob.response.Response.

morepath.render_html(content, request)
Take string and return text/html response.

morepath.render_json(content, request)
Take dict/list/string/number content and return json response.

class morepath.security.Identity(userid, **kw)
Claimed identity of a user.

Note that this identity is just a claim; to authenticate the user and authorize them you need to implement
Morepath permission directives.

Parameters

• userid – The userid of this identity

• kw – Extra information to store in identity.

102 Chapter 1. Table of Contents

http://reg.readthedocs.org/en/latest/api.html#reg.Lookup
http://docs.webob.org/en/latest/api/response.html#webob.response.Response

Morepath Documentation, Release 0.13.2

as_dict()
Export identity as dictionary.

This includes the userid and the extra keyword parameters used when the identity was created.

Returns dict with identity info.

class morepath.security.IdentityPolicy
Identity policy API.

Implement this API if you want to have a custom way to establish identities for users in your application.

forget(response, request)
Forget identity on response.

Implements morepath.forget_identity, which is called from user logout code.

Remove identifying information from the response. This could delete a cookie or issue a basic auth re-
authentication.

Parameters

• response (morepath.Response) – response object on which to forget identity.

• request (morepath.Request) – request object.

identify(request)
Establish what identity this user claims to have from request.

Parameters request (morepath.Request.) – Request to extract identity information
from.

Returns morepath.security.Identity instance or
morepath.security.NO_IDENTITY if identity cannot be established.

remember(response, request, identity)
Remember identity on response.

Implements morepath.remember_identity, which is called from user login code.

Given an identity object, store it on the response, for instance as a cookie. Some policies may not do any
storing but instead retransmit authentication information each time in the request. Basic authentication is
an example of such a non-storing policy.

Parameters

• response (morepath.Response) – response object on which to store identity.

• request (morepath.Request) – request object.

• identity (morepath.security.Identity) – identity to remember.

class morepath.security.BasicAuthIdentityPolicy(realm=’Realm’)
Identity policy that uses HTTP Basic Authentication.

forget(response, request)
Forget identity on response.

This causes the browser to issue a basic authentication dialog. Warning: for basic auth, the browser in fact
does not forget the information even if forget is called.

Parameters

• response (morepath.Response) – response object on which to forget identity.

• request (morepath.Request) – request object.

1.22. API 103

Morepath Documentation, Release 0.13.2

identify(request)
Establish claimed identity using request.

Parameters request (morepath.Request.) – Request to extract identity information
from.

Returns morepath.security.Identity instance.

remember(response, request, identity)
Remember identity on response.

This is a no-op for basic auth, as the browser re-identifies upon each request in that case.

Parameters

• response (morepath.Response) – response object on which to store identity.

• request (morepath.Request) – request object.

• identity (morepath.security.Identity) – identity to remember.

morepath.security.NO_IDENTITY = <morepath.security.NoIdentity object>

class morepath.Converter(decode, encode=None)
How to decode from strings to objects and back.

Only used for decoding for a list with a single value, will error if more or less than one value is entered.

Used for decoding/encoding URL parameters and path parameters.

Create new converter.

Parameters

• decode – function that given string can decode them into objects.

• encode – function that given objects can encode them into strings.

class morepath.converter.ConverterRegistry
A registry for converters.

Used to decode/encode URL parameters and path variables used by the morepath.App.path() directive.

Is aware of inheritance.

argument_and_explicit_converters(arguments, converters)
Use explict converters unless none supplied, then use default args.

converter_for_explicit_or_type(c)
Given a converter or a type, turn it into an explicit one.

converter_for_explicit_or_type_or_list(c)
Given a converter or type or list, turn it into an explicit one.

Parameters c – can either be a converter, or a type for which a converter can be looked up, or a
list with a converter or a type in it.

Returns a Converter instance.

converter_for_type(type)
Get converter for type.

Is aware of inheritance; if nothing is registered for given type it returns the converter registered for its base
class.

Parameters type – The type for which to look up the converter.

Returns a morepath.Converter instance.

104 Chapter 1. Table of Contents

Morepath Documentation, Release 0.13.2

converter_for_value(v)
Get converter for value.

Is aware of inheritance; if nothing is registered for type of given value it returns the converter registered
for its base class.

Parameters value – The value for which to look up the converter.

Returns a morepath.Converter instance.

explicit_converters(converters)
Given converter dictionary, make everything in it explicit.

This means types have converters looked up for them, and lists are turned into ListConverter.

register_converter(type, converter)
Register a converter for type.

Parameters

• type – the Python type for which to register the converter.

• converter – a morepath.Converter instance.

morepath.pdbsupport.set_trace(*args, **kw)
Set pdb trace as in import pdb; pdb.set_trace, ignores reg.

Use from morepath import pdbsupport; pdbsupport.set_trace() to use.

The debugger won’t step into reg, inspect or repoze.lru.

1.23 Comparison with other Web Frameworks

We hear you ask:

There are a million Python web frameworks out there. How does Morepath compare?

Pyramid Design Chocies

This document is a bit like the Design Defense Document of the Pyramid web framework. The Pyramid doc-
ument makes for a very interesting read if you’re interested in web framework design. More web frameworks
should do that.

If you’re already familiar with another web framework, it’s useful to learn how Morepath is the same and how it is
different, as that helps you understand it more quickly. So we go into some of this here.

Our ability to compare Morepath to other web frameworks is limited by our familiarity with them, and also by their
aforementioned large quantity. But we’ll try. Feel free to pitch in new comparisons, or tell us where we get it wrong!

You may also want to read the Design Notes document.

1.23.1 Overview

Morepath aims to be foundational. All web applications are different. Some are simple. Some, like CMSes, are
like frameworks themselves. It’s likely that some of you will need to build your own frameworky things on top of
Morepath. Morepath offers various facilities to help you there: you can define reusable base applications and it even
allows you to extend Morepath with new directives. Morepath isn’t there to be hidden away under another framework

1.23. Comparison with other Web Frameworks 105

http://docs.pylonsproject.org/projects/pyramid/en/latest/designdefense.html

Morepath Documentation, Release 0.13.2

though - these extensions still look like Morepath. The orientation towards being foundational makes Morepath more
like Pyramid, or perhaps Flask, than like Django.

Morepath aims to have a small core. It isn’t full stack; it’s a microframework. It should be easy to pick up. This makes
it similar to other microframeworks like Flask or CherryPy, but different from Django and Zope, which offer a lot of
features.

Morepath is opinionated. There is only one way to do routing and one way to do configuration. This makes it like a
lot of web frameworks, but unlike Pyramid, which takes more of a toolkit approach where a lot of choices are made
available.

Morepath is a routing framework, but it’s model-centric. Models have URLs. This makes it like a URL traversal frame-
work like Zope or Grok, and also like Pyramid when traversal is in use. It makes it unlike other routing frameworks
like Django or Flask, which have less awareness of models.

Paradoxically enough one thing Morepath is opinionated about is flexibility, as that’s part of its mission to be a good
foundation. That’s what its configuration system (Dectate) and generic function system (Reg) are all about. Want
to change behavior? You can override everything. You can introduce new registries and new directives. Even core
behavior of Morepath can be changed by overriding its generic functions. This makes Morepath like Zope, and
especially like Pyramid, but less like Django or Flask.

1.23.2 Routing

Collect 200 dollars

Do not directly go to the view. Go to the model first. Only then go to the view. Do collect 200 dollars. Don’t go
to jail.

Morepath is a routing web framework, like Django and Flask and a lot of others. This is a common way to use Pyramid
too (the other is traversal). This is also called URL mapping or dispatching. Morepath is to our knowledge, unique in
that the routes don’t directly go to views, but go through models first.

Morepath’s route syntax is very similar to Pyramid’s, i.e. /hello/{name}. Flask is also similar. It’s unlike Django’s
regular expressions. Morepath works at a higher level than that deliberately, as that makes it possible to disambiguate
similar routes.

This separation of model and view lookup helps in code organisation, as it allows you to separate the code that
organises the URL space from the code that implements your actual views.

1.23.3 Linking

Because it routes to models, Morepath allows you to ask for the URL of a model instance, like this:

request.link(mymodel)

That is an easier and less brittle way to make links than having to name your routes explicitly. Morepath pushes link
generation quite far: it can construct links with paths and URL parameters automatically.

Morepath shares the property of model-based links with traversal based web frameworks like Zope and Grok, and also
Pyramid in non-routing traversal mode. Uniquely among them Morepath does route, not traverse.

For more: Paths and Linking.

106 Chapter 1. Table of Contents

http://dectate.readthedocs.org
http://reg.readthedocs.org
https://en.wikipedia.org/wiki/Monopoly_%28game%29

Morepath Documentation, Release 0.13.2

1.23.4 View lookup

Morepath uses a separate view lookup system. The name of the view is determined from the last step of the path being
routed to. With this URL path for instance:

/document/edit

the /edit bit indicates the name of the view to look up for the document model.

If no view step is supplied, the default view is looked up:

/document

This is like modern Zope works, and like how the Plone CMS works. It’s also like Grok. It’s like Pyramid if it’s used
with traversal instead of routing. Overall there’s a strong Zope heritage going on, as all these systems are derived from
Zope in one way or another. Morepath is unique in that it combines routing with view lookup.

This decoupling of views from models helps with expressivity, as it lets you write reusable, generic views, and code
organisation as mentioned before.

For more: Views.

1.23.5 WSGI

Morepath is a WSGI-based framework, like Flask or Pyramid. It’s natively WSGI, unlike Django, which while WSGI
is supported also has its own way of doing middleware.

A Morepath app is a standard WSGI app. You can plug it into a WSGI compliant web server like Apache or Nginx or
gunicorn. You can also combine Morepath with WSGI components, such as for instance the Fanstatic static resource
framework.

1.23.6 Permissions

Morepath has a permission framework built-in: it knows about authentication and lets you plug in authenticators, you
can protect views with permissions and plug in code that tells Morepath what permissions someone has for which
models. It’s small but powerful in what it lets you do.

This is unlike most other micro-frameworks like Flask, Bottle, CherryPy or web.py. It’s like Zope, Grok and Pyramid,
and has learned from them, though Morepath’s system is more streamlined.

For more you can check out this blog entry. (It will be integrated in this documentation later).

1.23.7 Explicit request

Some frameworks, like Flask and Bottle, have a magic request global that you can import. But request isn’t really a
global, it’s a variable, and in Morepath it’s a variable that’s passed into view functions explicitly. This makes Morepath
more similar to Pyramid or Django.

1.23.8 Testability and Global state

Developers that care about writing testable code try to avoid global state, in particular mutable global state, as it can
make testing harder. If the framework is required to be in a certain global state before the code under test can be run,
it becomes harder to test that code, as you need to know first what global state to manipulate.

1.23. Comparison with other Web Frameworks 107

http://wsgi.readthedocs.org/en/latest/
http://www.fanstatic.org
http://blog.startifact.com/posts/morepath-security.html

Morepath Documentation, Release 0.13.2

Globals can also be a problem when multiple threads try to write the global at the same time. Web frameworks avoid
this by using thread locals. Confusingly enough these locals are globals, but they’re isolated from other threads.

Morepath the framework does not require any global state. Of course Morepath’s app are module globals, but they’re
not used that way once Morepath’s configuration is loaded and Morepath starts to handle requests. Morepath’s frame-
work code passes the app along as a variable (or attribute of a variable, such as the request) just like everything else.

Morepath is built on the Reg generic function library. Implementations of generic functions can be plugged in sepa-
rately per Morepath app: each app has a separate reg registry. When you call a generic function Reg needs to know
what registry to use to look it up. You can make this completely explicit by using a special lookup argument:

some_generic_function(doc, 3, lookup=app.lookup())

That’s all right in framework code, but doing that all the time is not very pretty in application code. For convenience,
Morepath therefore sets up the current lookup implicitly as thread local state. Then you can simply write this:

some_generic_function(doc, 3)

Flask is quite happy to use global state (with thread locals) to have a request that you can import. Pyramid is generally
careful to avoid global state, but does allow using thread local state to get access to the current registry in some cases.

Summary: Morepath does not require any global state, but allows the current lookup to be set up as such for conve-
nience.

1.23.9 No default database

Morepath has no default database integration. This is like Flask and Bottle and Pyramid, but unlike Zope or Django,
which have assumptions about the database baked in (ZODB and Django ORM respectively).

You can plug in your own database, or even have no database at all. You could use SQLAlchemy, or the ZODB.
Morepath lets you treat anything as models. We’re not against writing examples or extensions that help you do this,
though we haven’t done so yet. Contribute!

1.23.10 Pluggable template languages

Some micro-frameworks like Flask and Bottle and web.py have template languages built-in, some, like CherryPy and
the Werkzeug toolkit, don’t. Pyramid doesn’t have built-in support either, but has standard plugins for the Chameleon
and Mako template languages.

Morepath allows you to plug in server templates. You can plug in Jinja2 through more.jinja2 and plug in Chameleon
through more.chameleon.

You don’t have to use a server template language though: Morepath aims to be a good fit for modern, client-side web
applications written in JavaScript. We’ve made it easy to send anything to the client, especially JSON. If templating is
used for such applications, it’s done on the client, in the web browser, not on the server.

1.23.11 Code configuration

Most Python web frameworks don’t have an explicit code configuration system. With “code configuration” I mean ex-
pressing things like “this function handles this route”, “this view works for this model”, and “this is the authentication
system for this app”. It also includes extension and overrides, such as “here is an additional route”, “use this function
to handle this route instead of what the core said”.

If a web framework doesn’t deal with code configuration explicitly, an implicit code configuration tends to grow.
There is one way to set up routes, another way to declare models, another way to do generic views, yet another way

108 Chapter 1. Table of Contents

http://jinja.pocoo.org/
https://pypi.python.org/pypi/more.jinja2
https://chameleon.readthedocs.org
https://pypi.python.org/pypi/more.chameleon

Morepath Documentation, Release 0.13.2

to configure the permission system, and so on. Each system works differently and uses a different API. Config files,
metaclasses and import-time side effects may all be involved.

On top of this, if the framework wants to allow reuse, extension and overrides the APIs tends to grow even more
distinct with specialised use cases, or yet more new APIs are grown.

Django is an example where configuration gained lots of knobs and buttons; another example is the original Zope.

Microframeworks aim for simplicity so don’t suffer from this so much, though probably at the cost of some flexibility.
You can still observe this kind of evolution in Flask’s pluggable views subsystem, though, for instance.

To deal with this problem in an explicit way the Zope project pioneered a component configuration mechanism.
By having a universal mechanism in which code is configured, the configuration API becomes general and allows
extension and override in a general manner as well. Zope uses XML files for this.

The Grok project tried to put a friendlier face on the rather verbose configuration system of Zope. Pyramid refined
Grok’s approach further. It offers a range of options for configuration: explicit calls in Python code, decorators, and
an extension that uses Zope-style XML.

In order to do its decorator based configuration, the Pyramid project created the Venusian python library. This is in turn
a reimagined version of the Martian python library created by the Grok project. Venusian was used by the Morepath
project originally, and even though it is gone it still helped inspire Morepath’s configuration system.

Morepath uses a new, general configuration system called Dectate that is based around decorators attached to appli-
cation objects. These application objects can extend other ones. Dectate supports a range sophisticated extension and
override use cases in a general way.

1.23.12 Components and Generic functions

The Zope project made the term “zope component architecture” (ZCA) (in)famous in the Python world.
Does it sound impressive, suggesting flexibility and reusability? Or does it sound scary, overengineered,
RequestProcessorFactoryFactory-like? Are you intimidated by it? We can’t blame you.

At its core the ZCA is really a system to add functionality to objects from the outside, without having to change their
classes. It helps when you need to build extensible applications and reusable generic functionality. Under the hood,
it’s just a fancy registry that knows about inheritance. Its a really powerful system to help build more complicated
applications and frameworks. It’s used by Zope, Grok and Pyramid.

Morepath uses something else: a library called Reg. This is a new, reimagined, streamlined implementation of the
idea of the ZCA.

The underlying registration APIs of the ZCA is rather involved, with quite a few special cases. Reg has a simpler,
more general registration API that is flexible enough to fulfill a range of use cases.

Finally what makes the Zope component architecture rather involved to use is its reliance on interfaces. An interface
is a special kind of object introduced by the Zope component architecture that is used to describe the API of objects.
It’s like an abstract base class.

If you want to look up things in a ZCA component registry the ZCA requires you to look up an interface. This requires
you to write interfaces for everything you want to be able to look up. The interface-based way to do lookups also
looks rather odd to the average Python developer: it’s not considered to be very Pythonic. To mitigate the last problem
Pyramid creates simple function-based APIs on top of the underlying interfaces.

Morepath by using Reg does away with interfaces altogether – instead it uses generic functions. The simple function-
based APIs are what is pluggable; there is no need to deal with interfaces anymore, but the system retains the power.
Morepath is simple functions all the way down.

1.23. Comparison with other Web Frameworks 109

http://pypi.python.org/pypi/venusian
http://pypi.python.org/pypi/martian
http://dectate.readthedocs.org
http://reg.readthedocs.org

Morepath Documentation, Release 0.13.2

1.24 Design Notes

Some of the use cases that influenced Morepath’s design are documented here.

1.24.1 Publish any model

It should be possible to publish any model object to the web on a readable URL. This includes model objects that are
retrieved from a relational database and were created with a ORM.

Allowing individual models to be published on separate URLs avoids the god object antipattern where all web opera-
tions are routed through a single object. Instead each model, through view objects, can handle model-specific requests
and operations. This encourages a more modular and reusable application design.

1.24.2 Routing

It should be easy to declare explicit routes to model. A route consists of a routing pattern with zero or more variables.
The variables are used to identify the model, for instance using a relational database query.

Having routes makes it easier to reason about the URL structure of an application. Routes also make it easier to
expose models that are retrieved using a query or are constructed on the fly, without imposing a specific structure on
the models.

1.24.3 Traversal

It should be possible to associate routes with specific models in the application, not just to the root. This way models
with sub-paths to sub-components can be made available as reusable components; an example of this could be a
container. If the model is published, its sub-components are then exposed as well.

This allows for increased reuse of not just models but relationships between models, and lets the developer publish
nested structures that cannot be specified using routing alone.

1.24.4 Linking

If a model is published, it should be possible to automatically generate a link to a model instance in the form of a URL.

This way there is no need to construct URLs manually, and there is no need to have to refer to routes explicitly in order
to construct URLs. The system knows which route to use and how to construct the parameters that go into the route
itself, given the model.

This is useful when creating RESTful web services (where hypermedia is the engine of application state), or to con-
struct rich client-side applications that get all their URLs from the server from a REST-style web service.

1.24.5 Model is web-agnostic

Model classes should not have to have any web knowledge; no particular base classes are required, and no methods
or attributes need to be implemented in order to publish instances of that model to the web. In case of an ORM, the
ORM does not need to be reconfigured in order to publish ORM-mapped classes to the web. Models do not receive
any request object and do not have to generate a response object.

Instead this knowledge is external to the models. Models should be optimized for programmatic use in general.

110 Chapter 1. Table of Contents

Morepath Documentation, Release 0.13.2

1.24.6 View/model separation

View objects are responsible for translating the model to the web and web operations to operations on the model.
Views receive the request object and generate the response object. This is again to avoid giving the models knowledge
about the web. This is a kind of model/view separation where the view is the intermediary between the model and the
web.

1.24.7 Isolation between applications

The system allows multiple applications to be published at the same time. Applications work in isolation from each
other by default. For instance, publishing a model on a URL does not affect another application, and publishing a view
for a model does not make that view available in the other application.

1.24.8 Sharing between applications

In order to support reusable components, it should be possible to explicitly break application isolation and make routes
to models and views globally available. Each application will share this information.

[Morepath in fact now allows more controlled sharing; only Morepath itself is globally shared]

1.24.9 Models can be published once per application

Per application a model can be exposed on a single URL pattern. So, the same instance could be published once per
application, in a URL structure optimal for each application.

Again this supports applications working in isolation - they may treat database models differently than other applica-
tions do.

1.24.10 Linking to another application

It should be possible to construct URLs to models in the context of another application, if this application is given
explicitly during link time.

1.24.11 Reusable components

It should be possible to define a base class (or interface) for a model that automatically pulls in (globally registered)
views and sub-paths when you subclass from it. This lets a framework developer define APIs that an application
developer can implement. By doing so, the application developer automatically gets a whole set of views for their
models.

1.24.12 Declarative

It should be possible to register the components in a declarative way. This avoids spaghetti registration code, and also
makes it possible to more easily reason about registrations (for instance to do overrides or detect conflicts).

1.24.13 Conflicts

If you try to do the same registration multiple times, the system should fail explicitly, as otherwise this would lead to
subtle errors.

1.24. Design Notes 111

Morepath Documentation, Release 0.13.2

1.24.14 Overrides

It should be possible to override one registration with another one. This should either be an explicit operation, or the
result of overriding in a different registry that has precedence over the defaults.

1.25 Developing Morepath

1.25.1 Community

Communication is important, so see Community for information on how to get in touch!

1.25.2 Install Morepath for development

First make sure you have virtualenv installed for Python 2.7.

Now create a new virtualenv somewhere for Morepath development:

$ virtualenv /path/to/ve_morepath

You should also be able to recycle an existing virtualenv, but this guarantees a clean one. Note that we skip activating
the environment here, as this is just needed to initially bootstrap the Morepath buildout.

Clone Morepath from github and go to the morepath directory:

$ git clone git@github.com:morepath/morepath.git
$ cd morepath

Now we need to run bootstrap.py to set up buildout, using the Python from the virtualenv we’ve created before:

$ /path/to/ve_morepath/bin/python bootstrap.py

This installs buildout, which can now set up the rest of the development environment:

$ bin/buildout

This downloads and installs various dependencies and tools. The commands you run in bin are all restricted to the
virtualenv you set up before. There is therefore no need to refer to the virtualenv once you have the development
environment going.

1.25.3 Running the tests

You can run the tests using py.test. Buildout has installed it for you in the bin subdirectory of your project:

$ bin/py.test morepath

To generate test coverage information as HTML do:

$ bin/py.test morepath --cov morepath --cov-report html

You can then point your web browser to the htmlcov/index.html file in the project directory and click on
modules to see detailed coverage information.

112 Chapter 1. Table of Contents

https://pypi.python.org/pypi/virtualenv
http://pytest.org/latest/

Morepath Documentation, Release 0.13.2

1.25.4 flake8

The buildout also installs flake8, which is a tool that can do various checks for common Python mistakes using pyflakes
and checks for PEP8 style compliance.

To do pyflakes and pep8 checking do:

$ bin/flake8 morepath

1.25.5 radon

The buildout installs radon. This is a tool that can check various measures of code complexity.

To check for cyclomatic complexity (excluding the tests):

$ bin/radon cc morepath -e "morepath/tests*"

To filter for anything not ranked A:

$ bin/radon cc morepath --min B -e "morepath/tests*"

And to see the maintainability index:

$ bin/radon mi morepath -e "morepath/tests*"

1.26 CHANGES

1.26.1 0.13.2 (2016-04-13)

• Undid change in 0.13.1 where App could not be instantiated if not committed, as ran into real-world code where
this assumption was broken.

1.26.2 0.13.1 (2016-04-13)

• Enable queries by the Dectate query tool.

• Document scan function in API docs.

• Work around an issue in Python where ~ (tilde) is quoted by urllib.quote & urllib.encode, even
though it should not be according to the RFC, as ~ is considered unreserved.

https://www.ietf.org/rfc/rfc3986.txt

• Document some tricks you can do with directives in a new “Directive tricks” document.

• Refactor creation of tweens into function on TweenRegistry.

• Update the REST document; it was rather old and made no mention of body_model.

• Bail out with an error if an App is instantiated without being committed.

1.26. CHANGES 113

https://pypi.python.org/pypi/flake8
https://pypi.python.org/pypi/pyflakes
http://www.python.org/dev/peps/pep-0008/
https://radon.readthedocs.org/en/latest/commandline.html
https://en.wikipedia.org/wiki/Cyclomatic_complexity
https://www.ietf.org/rfc/rfc3986.txt

Morepath Documentation, Release 0.13.2

1.26.3 0.13 (2016-04-06)

• Breaking change. Morepath has a new, extensively refactored configuration system based on dectate and
importscan. Dectate is an extracted, and heavily refactored version of Morepath’s configuration system that
used to be in morepath.config module. It’s finally documented too!

Dectate and thus Morepath does not use Venusian (or Venusifork) anymore so that dependency is gone.

Code that uses morepath.autosetup should still work.

Code that uses morepath.setup and scans and commits manually needs to change. Change this:

from morepath import setup

config = morepath.setup()
config.scan(package)
config.commit()

into this:

import morepath

morepath.scan(package)
morepath.autocommit()

Similarly config.scan() without arguments to scan its own package needs to be rewritten to use
morepath.scan() without arguments.

Anything you import directly now does not need to be scanned anymore; the act of importing a module directly
registers the directives with Morepath, though as before they won’t be active until you commit. But scanning
something you’ve imported before won’t do any harm.

The signature for morepath.scan is somewhat different than that of the old config.scan. There is no
third argument recursive=True anymore. The onerror argument has been renamed to handle_error
and has different behavior; the importscan documentation describes the details.

If you were writing tests that involve Morepath, the old structure of the test was:

import morepath

def test_foo():
config = morepath.setup()

class App(morepath.App):
testing_config = config

... use directives on App ...

config.commit()

... do asserts ...

This now needs to change to:

import morepath

def test_foo():
class App(morepath.App):

pass

... use directives on App ...

114 Chapter 1. Table of Contents

http://dectate.readthedocs.org
http://importscan.readthedocs.org
http://importscan.readthedocs.org

Morepath Documentation, Release 0.13.2

morepath.commit([App])

... do asserts ...

So, you need to use the morepath.commit() function and give it a list of the application objects you want
to commit, explicitly. morepath.autocommit() won’t work in the context of a test.

If you used a test that scanned code you need to adjust it too, from:

import morepath
import some_package

def test_foo():
config = morepath.setup()

config.scan(some_package)

config.commit()

... do asserts ...

to this:

import morepath
import some_package

def test_foo():
morepath.scan(some_package)
morepath.commit([some_package.App])

... do asserts ...

Again you need to be explicit and use morepath.commit to commit those apps you want to test.

If you had a low-level reference to app.registry in your code you now need to change this to
app.config.registry. Expect more changes to this in future versions – thanks to the dectate library
we can now start breaking up the big registry into multiple independent ones all stored under app.config.

If you created custom directives, the way to create directives is now documented as part of the dectate project.
The main updates you need to do are:

– subclass from dectate.Action instead of morepath.Directive.

– no more app first argument.

– no super call is needed anymore in __init__.

– add a config class variable to declare the registries you want to affect. Until we break up the main
registry this is:

from morepath.app import Registry

...
config = { 'registry': Registry }

– reverse the arguments to perform, so that the object being registered comes first. So change:

def perform(self, registry, obj):
...

into:

1.26. CHANGES 115

http://dectate.readthedocs.org

Morepath Documentation, Release 0.13.2

def perform(self, obj, registry):
...

But instead of registry use the registry you set up in your action’s config.

– no more prepare. Do error checking inside the perform method and raise a DirectiveError if
something is wrong.

If you created sub-actions from prepare, subclass from dectate.Composite instead and implement an
actions method.

– group_key method has changed to group_class class variable.

If you were using morepath.sphinxext to document directives using Sphinx autodoc, use
dectate.sphinxext instead.

• Breaking change If you want to use Morepath directives on @staticmethod, you need to change the order
in which these are applied. In the past:

@App.path(model=Foo, path='bar')
@staticmethod
def get_foo():

....

But now you need to write:

@staticmethod
@App.path(model=Foo, path='bar')
def get_foo():

....

• Breaking change You cannot use a Morepath path directive on a @classmethod anymore.

• Breaking change. Brought app.settings back, a shortcut to the settings registry. If you use settings, you need to
replace any references to app.registry.settings to app.settings.

• Add request.class_link. This lets you link using classes instead of instances as an optimization. In some cases
instantiating an object just so you can generate a link to it is relatively expensive. In that case you can use
request.class_link instead. This lets you link to a model class and supply a variables dictionary manually.

• Breaking change. In Morepath versions before this there was an class attribute on App subclasses called
registry. This was a giant mixed registry which subclassed a lot of different registries used by Morepath
(reg registry, converter registry, traject registry, etc). The Dectate configuration system allows us to break this
registry into a lot of smaller interdependent registries that are configured in the config of the directives.

While normally you shouldn’t be, if you were somehow relying on App.registry in your code you
should now rewrite it to use App.config.reg_registry, App.config.setting_registry,
App.config.path_registry etc.

1.26.4 0.12 (2016-01-27)

• Breaking change. The request.after function is now called even if the response was directly created by
the view (as opposed to the view returning a value to be rendered by morepath). Basically, request.after
is now guaranteed to be called if the response’s HTTP status code lies within the 2XX-3XX range.

See https://github.com/morepath/morepath/issues/346

• Fixed a typo in the defer_link documentation.

• Morepath’s link generation wasn’t properly quoting paths and parameters in all circumstances where non-ascii
characters or URL-quoted characters were used. See issue #337.

116 Chapter 1. Table of Contents

https://github.com/morepath/morepath/issues/346

Morepath Documentation, Release 0.13.2

• Morepath could not handle varargs or keyword arguments properly in path functions. Now bails out with an
error early during configuration time. To fix existing code, get rid of any *args or **kw.

• Morepath could not properly generate links if a path directive defines a path variable for the path but does not
actually use it in the path function. Now we complain during configuration time. To fix existing code, add all
variables that are defined in the path (i.e. {id}) to the function signature.

• Certain errors (ConfigError) were not reporting directive line number information. They now do.

• Better ConfigError reporting when setting_section is in use.

• Removed the unused request parameter from the link method in morepath.request. See issue #351.

• Require venusifork 2.0a3. This is a hacked version which works around some unusual compatibility issues with
six.

1.26.5 0.11.1 (2015-06-29)

• setuptools has the nasty habit to change underscores in project names to minus characters. This broke the new
autoscan machinery for packages with an underscore in their name (such as morepath_sqlalchemy). This was
fixed.

1.26.6 0.11 (2015-06-29)

• Breaking change. The morepath.autoconfig and morepath.autosetup methods had to be rewrit-
ten. Before, Morepath was unable to autoload packages installed using pip.

As a result, Morepath won’t be able to autoload packages if the setup.py name differs from the name of the
distributed package or module.

For example: A package named my-app containing a module named myapp won’t be automatically loaded
anymore.

Packages like this need to be loaded manually now:

import morepath
import myapp

config = morepath.setup()
config.scan(myapp)
config.commit()

See https://github.com/morepath/morepath/issues/319

• The config.scan method now excludes ‘test’ and ‘tests’ directories by default.

See https://github.com/morepath/morepath/issues/326

• The template_directory directive will no longer inspect the current module if the template directory
refers to an absolute path. This makes it easier to write tests where the current module might not be available.

Fixes https://github.com/morepath/morepath/issues/299

• The identity_policy passes settings to the function if it defines such an argument. This way an
identity policy can be created that takes settings into account.

See https://github.com/morepath/morepath/issues/309

• Dots in the request path are now always normalized away. Before, Morepath basically relied on the client to do
this, which was a potential security issue.

1.26. CHANGES 117

https://github.com/morepath/morepath/issues/319
https://github.com/morepath/morepath/issues/326
https://github.com/morepath/morepath/issues/299
https://github.com/morepath/morepath/issues/309

Morepath Documentation, Release 0.13.2

See https://github.com/morepath/morepath/issues/329

• Additional documentation on the Morepath config system: http://morepath.readthedocs.org/en/latest/configuration.html

• Additional documentation on how to serve static images in https://morepath.readthedocs.org/en/latest/more.static.html

• Move undocumented pdb out of __init__.py as it could sometimes trip up things. Instead documented it
in the API docs in the special morepath.pdbsupport module.

https://github.com/morepath/morepath/issues/328

1.26.7 0.10 (2015-04-09)

• Server-side templating language support: there is now a template argument for the html directive (and
view and json). You need to use a plugin to add particular template languages to your project, such as
more.chameleon and more.jinja2, but you can also add your own.

See http://morepath.readthedocs.org/en/latest/templates.html

• Add a new “A Review of the Web” document to the docs to show how Morepath fits within the web.

http://morepath.readthedocs.org/en/latest/web.html

• The publisher does not respond to a None render function anymore. Instead, the view directive now uses a
default render_view if None is configured. This simplifies the publisher guaranteeing a render function
always exists.

Fixes https://github.com/morepath/morepath/issues/283

• Introduce a request.resolve_path method that allows you to resolve paths to objects programmatically.

• Modify setup.py to use io.open instead of open to include the README and the CHANGELOG and
hardcode UTF-8 so it works on all versions of Python with all default encodings.

• Various documentation fixes.

1.26.8 0.9 (2014-11-25)

• Breaking change. In previous releases of Morepath, Morepath did not include the full hostname in generated
links (so /a instead of http://example.com/a). Morepath 0.9 does include the full hostname in generated
links by default. This to support the non-browser client use case better. In the previous system without fully
qualified URLs, client code needs to manually add the base of links itself in order to be able to access them.
That makes client code more complicated than it should be. To make writing such client code as easy as possible
Morepath now generates complete URLs.

This should not break any code, though it can break tests that rely on the previous behavior. To fix webtest
style tests, prefix the expected links with http://localhost/.

If for some reason you want the old behavior back in an application, you can use the link_prefix directive:

@App.link_prefix()
def my_link_prefix(request):

return '' # prefix nothing again

• Directives are now logged to the morepath.directive log, which is using the standard Python logging
infrastructure. See http://morepath.readthedocs.org/en/latest/logging.html

• Document more.forwarded proxy support in http://morepath.readthedocs.org/en/latest/paths_and_linking.html

• Document behavior of request.after in combination with directly returning a response object from a view.

118 Chapter 1. Table of Contents

https://github.com/morepath/morepath/issues/329
http://morepath.readthedocs.org/en/latest/configuration.html
https://morepath.readthedocs.org/en/latest/more.static.html
https://github.com/morepath/morepath/issues/328
http://morepath.readthedocs.org/en/latest/templates.html
http://morepath.readthedocs.org/en/latest/web.html
https://github.com/morepath/morepath/issues/283
http://morepath.readthedocs.org/en/latest/logging.html
http://morepath.readthedocs.org/en/latest/paths_and_linking.html

Morepath Documentation, Release 0.13.2

• Expose body_model_predicate to the public Morepath API. You can now say your predicate comes after
it.

• Expose LAST_VIEW_PREDICATE to the Morepath API. This is the last predicate defined by the Morepath
core.

• Update the predicate documentation.

• Updated the more.static doc to reflect changes in it.

• Fix doc for grouping views with the with statement.

• Suggest a few things to try when your code doesn’t appear to be scanned properly.

• A new view predicate without a fallback resulted in an internal server error if the predicate did not match. Now
it results in a 404 Not Found by default. To override this default, define a predicate fallback.

1.26.9 0.8 (2014-11-13)

• Breaking change. Reg 0.9 introduces a new, more powerful way to create dispatch functions, and this has
resulted in a new, incompatible Reg API.

Morepath has been adjusted to make use of the new Reg. This won’t affect many Morepath applications, and
they should be able to continue unchanged. But some Morepath extensions and advanced applications may
break, so you should be aware of the changes.

– The @App.function directive has changed from this:

class A(object):
pass

class B(object):
pass

@reg.generic
def dispatch_function(a, b):

pass

@App.function(dispatch_function, A, B)
def dispatched_to(a, b):

return 'dispatched to A and B'

to this:

class A(object):
pass

class B(object):
pass

@reg.dispatch('a', 'b')
def dispatch_function(a, b):

pass

@App.function(dispatch_function, a=A, b=B)
def dispatched_to(a, b):

return 'dispatched to A and B'

The new system in Reg (see its docs) is a lot more flexible than what we had before. When you use
function you don’t need to know about the order of the predicates anymore – this is determined by

1.26. CHANGES 119

http://reg.readthedocs.org

Morepath Documentation, Release 0.13.2

the arguments to @reg.dispatch(). You can now also have function arguments that Reg ignores for
dispatch.

– The @App.predicate and @App.predicate_fallback directive have changed. You
can now install custom predicates and fallbacks for any generic function that’s marked with
@reg.dispatch_external_predicates(). The Morepath view code has been simplified to be
based on this, and is also more powerful as it can now be extended with new predicates that use predicate-
style dispatch.

• Introduce the body_model predicate for views. You can give it the class of the request.body_obj you
want to handle with this view. In combination with the load_json directive this allows you to write views
that respond only to the POSTing or PUTing of a certain type of object.

• Internals refactoring: we had a few potentially overridable dispatch functions in morepath.generic
that actually were never overridden in any directives. Simplify this by moving their implementation
into morepath.publish and morepath.request. generic.link, generic.consume and
generic.response are now gone.

• Introduce a link_prefix directive that allows you to set the URL prefix used by every link generated by the
request.

• A bug fix in request.view(); the lookup on the request was not properly updated.

• Another bug fix in request.view(); if deferred_link_app app is used, request.app should be
adjusted to the app currently being deferred to.

• request.after behavior is clarified: it does not run for any exceptions raised during the handling of the
request, only for the “proper” response. Fix a bug where it did sometimes run.

• Previously if you returned None for a path in a variables function for a path, you would get a path with
None in it. Now it is a LinkError.

• If you return a non-dict for variables for a path, you get a proper LinkError now.

• One test related to defer_links did not work correctly in Python 3. Fixed.

• Add API doc for body_obj. Also fix JSON and objects doc to talk about request.body_obj instead of
request.obj.

• Extend API docs for security: detail the API an identity policy needs to implement and fix a few bugs.

• Fix ReST error in API docs for autoconfig and autosetup.

• Fix a few ReST links to the API docs in the app reuse document.

1.26.10 0.7 (2014-11-03)

• Breaking change. There has been a change in the way the mount directive works. There has also been a
change in the way linking between application works. The changes result in a simpler, more powerful API and
implementation.

The relevant changes are:

– You can now define your own custom __init__ for morepath.App subclasses. Here you can specify
the arguments with which your application object should be mounted. The previous variables class
attribute is now ignored.

It’s not necessary to use super() when you subclass from morepath.App directly.

So, instead of this:

120 Chapter 1. Table of Contents

Morepath Documentation, Release 0.13.2

class MyApp(morepath.App):
variables = ['mount_id']

You should now write this:

class MyApp(morepath.App):
def __init__(self, mount_id):

self.mount_id = mount_id

– The mount directive should now return an instance of the application being mounted, not a dictionary
with mount parameters. The application is specified using the app argument to the directive. So instead
of this:

@RootApp.mount(app=MyApp, path='sub/{id}')
def mount_sub(id):

return {
'mount_id': id

}

You should now use this:

@RootApp.mount(app=MyApp, path='sub/{id}')
def mount_sub(id):

return MyApp(mount_id=id)

– The mount directive now takes a variables argument. This works like the variables argument to
the path directive and is used to construct links.

It is given an instance of the app being mounted, and it should reconstruct those variables needed in its
path as a dictionary. If omitted, Morepath tries to get them as attributes from the application instance, just
like it tries to get attributes of any model instance.

MyApp above is a good example of where this is required: it does store the correct information, but as
the mount_id attribute, not the id attribute. You should add a variables argument to the mount
directive to explain to Morepath how to obtain id:

@RootApp.mount(app=MyApp, path='sub/{id}',
variables=lambda app: dict(id=app.mount_id))

def mount_sub(id):
return MyApp(mount_id=id)

The simplest way to avoid having to do this is to name the attributes the same way as the variables in the
paths, just like you can do for model classes.

– In the past you’d get additional mount context variables as extra variables in the function decorated by
the path decorator. This does not happen anymore. Instead you can add a special app parameter to this
function. This gives you access to the current application object, and you can extract its attributes there.

So instead of this:

@MyApp.path(path='models/{id}', model=Model)
def get_root(mount_id, id):

return Model(mount_id, id)

where mount_id is magically retrieved from the way MyApp was mounted, you now write this:

@MyApp.path(path='models/{id}', model=Model)
def get_root(app, id):

return Model(app.mount_id, id)

1.26. CHANGES 121

Morepath Documentation, Release 0.13.2

– There was an request.mounted attribute. This was a special an instance of a special Mounted class.
This Mounted class is now gone – instead mounted applications are simply instances of their class. To
access the currently mounted application, use request.app.

– The Request object had child and sibling methods as well as a parent attribute to navigate to
different “link makers”. You’d navigate to the link maker of an application in order to create links to
objects in that application. These are now gone. Instead you can do this navigation from the application
object directly, and instead of link makers, you get application instances. You can pass an application
instance as a special app argument to request.link and request.view.

So instead of this:

request.child(foo).link(obj)

You now write this:

request.link(obj, app=request.app.child(foo))

And instead of this:

request.parent.link(obj)

You now write this:

request.link(obj, app=request.app.parent)

Note that the new defer_links directive can be used to automate this behavior for particular models.

– The .child method on App can the app class as well as the parameters for the function decorated by the
mount directive:

app.child(MyApp, id='foo')

This can also be done by name. So, assuming MyApp was mounted under my_app:

app.child('my_app', id='foo')

This is how request.child worked already.

As an alternative you can now instead pass an app instance:

app.child(MyApp(mount_id='foo'))

Unlike the other ways to get the child, this takes the parameters need to create the app instance, as opposed
to taking the parameters under which the app was mounted.

Motivation behind these changes:

Morepath used to have a Mount class separate from the App classes you define. Since Morepath 0.4 application
objects became classes, and it made sense to make their instances the same as the mounted application. This
unification has now taken place.

It then also made sense to use its navigation methods (child and friend) to navigate the mount tree, instead of
using the rather complicated “link maker” infrastructure we had before.

This change simplifies the implementation of mounting considerably, without taking away features and actu-
ally making the APIs involved more clear. This simplification in turn made it easier to implement the new
defer_links directive.

• Breaking change. The arguments to the render function have changed. This is a function you can pass to a
view directive. The render function now takes a second argument, the request. You need to update your render
functions to take this into account. This only affects code that supplies an explicit render function to the

122 Chapter 1. Table of Contents

Morepath Documentation, Release 0.13.2

view, json and html directives, and since not a lot of those functions exist, the impact is expected to be
minimal.

• Breaking change. In certain circumstances it was useful to access the settings through an appli-
cation instance using app.settings. This does not work anymore; access the settings through
app.registry.settings instead.

• dump_json and load_json directives. This lets you automatically convert an object going to a re-
sponse to JSON, and converts JSON coming in as a request body from JSON to an object. See
http://morepath.readthedocs.org/en/latest/json.html for more information.

• defer_links directive. This directive can be used to declare that a particular mounted application takes care
of linking to instances of a class. Besides deferring request.link() it will also defer request.view.
This lets you combine applications with more ease. By returning None from it you can also defer links to this
app’s parent app.

• app.ancestors() method and app.root attribute. These can be used for convenient access to the
ancestor apps of a mounted application. To access from the request, use request.app.root and
request.app.ancestors().

• The App class now has a request_class class attribute. This determines the class of the request that is
created and can be overridden by subclasses. more.static now makes use of this.

• Several generic functions that weren’t really pulling their weight are now gone as part of the mount
simplification: generic.context and generic.traject are not needed anymore, along with
generic.link_maker.

• Change documentation to use uppercase class names for App classes everywhere. This reflects a change in 0.4
and should help clarity.

• Added documentation about auto-reloading Morepath during development.

• No longer silently suppress ImportError during scanning: this can hide genuine ImportError in the underly-
ing code.

We were suppressing ImportError before as it can be triggered by packages that rely on optional dependen-
cies.

This is a common case in the .tests subdirectory of a package which may import a test runner like pytest.
pytest is only a test dependency of the package and not a mainline dependencies, and this can break scanning.
To avoid this problem, Morepath’s autosetup and autoconfig now automatically ignore .tests and .test
sub-packages.

Enhanced the API docs for autosetup and autoconfig to describe scenarios which can generate legitimate
ImportError exceptions and how to handle them.

• Fix of examples in tween documentation.

• Minor improvement in docstrings.

1.26.11 0.6 (2014-09-08)

• Fix documentation on the with statement; it was not using the local view variable correctly.

• Add #morepath IRC channel to the community docs.

• Named mounts. Instead of referring to the app class when constructing a link to an object in an application
mounted elsewhere, you can put in the name of the mount. The name of the mount can be given explicitly in the
mount directive but defaults to the mount path.

1.26. CHANGES 123

http://morepath.readthedocs.org/en/latest/json.html

Morepath Documentation, Release 0.13.2

This helps when an application is mounted several times and needs to generate different links depending on
where it’s mounted; by referring to the application by name this is loosely coupled and will work no matter what
application is mounted under that name.

This also helps when linking to an application that may or may not be present; instead of doing an import while
looking for ImportError, you can try to construct the link and you’ll get a LinkError exception if the
application is not there. Though this still assumes you can import the model class of what you’re linking to.

(see issue #197)

• Introduce a sibling method on Request. This combines the .parent.child step in one for convenience
when you want to link to a sibling app.

1.26.12 0.5.1 (2014-08-28)

• Drop usage of sphinxcontrib.youtube in favor of raw HTML embedding, as otherwise too many things broke on
readthedocs.

1.26.13 0.5 (2014-08-28)

• Add more.static documentation on local components.

• Add links to youtube videos on Morepath: the keynote at PyCon DE 2013, and the talk on Morepath at EuroPy-
thon 2014.

• Add a whole bunch of extra code quality tools to buildout.

• verify_identity would be called even if no identity could be established. Now skip calling
verify_identity when we already have NO_IDENTITY. See issue #175.

• Fix issue #186: mounting an app that is absorbing paths could sometimes generate the wrong link. Thanks to
Ying Zhong for the bug report and test case.

• Upgraded to a newer version of Reg (0.8) for @reg.classgeneric support as well as performance improve-
ments.

• Add a note in the documentation on how to deal with URL parameters that are not Python names (such as foo@,
or blah[]). You can use a combination of extra_parameters and get_converters to handle them.

• Document the use of the with statement for directive abbreviation (see the Views document).

• Created a mailing list:

https://groups.google.com/forum/#!forum/morepath

Please join!

Add a new page on community to document this.

1.26.14 0.4.1 (2014-07-08)

• Compatibility for Python 3. I introduced a meta class in Morepath 0.4 and Python 3 did not like this. Now the
tests pass again in Python 3.

• remove generic.lookup, unused since Morepath 0.4.

• Increase test coverage back to 100%.

124 Chapter 1. Table of Contents

https://groups.google.com/forum/#!forum/morepath

Morepath Documentation, Release 0.13.2

1.26.15 0.4 (2014-07-07)

• BREAKING CHANGE Move to class-based application registries. This breaks old code and it needs to be
updated. The update is not difficult and amounts to:

– subclass morepath.App instead of instantiating it to create a new app. Use subclasses for extension too.

– To get a WSGI object you can plug into a WSGI server, you need to instantiate the app class first.

Old way:

app = morepath.App()

So, the app object that you use directives on is an instance. New way:

class app(morepath.App):
pass

So, now it’s a class. The directives look the same as before, so this hasn’t changed:

@app.view(model=Foo)
def foo_default(self, request):

...

To extend an application with another one, you used to have to pass the extends arguments. Old way:

sub_app = morepath.App(extends=[core_app])

This has now turned into subclassing. New way:

class sub_app(core_app):
pass

There was also a variables argument to specify an application that can be mounted. Old way:

app = morepath.App(variables=['foo'])

This is now a class attribute. New way:

class app(morepath.App):
variables = ['foo']

The name argument to help debugging is gone; we can look at the class name now. The testing_config
argument used internally in the Morepath tests has also become a class attribute.

In the old system, the application object was both configuration point and WSGI object. Old way:

app = morepath.App()

configuration
@app.path(...)
...

wsgi
morepath.run(app)

In the Morepath 0.4 this has been split. As we’ve already seen, the application class serves. To get a WSGI
object, you need to first instantiate it. New way:

class app(morepath.App):
pass

1.26. CHANGES 125

Morepath Documentation, Release 0.13.2

configuration
@app.path(...)
...

wsgi
morepath.run(app())

To mount an application manually with variables, we used to need the special mount() method. Old way:

mounted_wiki_app = wiki_app.mount(wiki_id=3)

In the new system, mounting is done during instantiation of the app:

mounted_wiki_app = wiki_app(wiki_id=3)

Class names in Python are usually spelled with an upper case. In the Morepath docs the application object has
been spelled with a lower case. We’ve used lower-case class names for application objects even in the updated
docs for example code, but feel free to make them upper-case in your own code if you wish.

Why this change? There are some major benefits to this change:

– both extending and mounting app now use natural Python mechanisms: subclassing and instantation.

– it allows us to expose the facility to create new directives to the API. You can create application-specific
directives.

• You can define your own directives on your applications using the directive directive:

@my_app.directive('my_directive')

This exposes details of the configuration system which is underdocumented for now; study the
morepath.directive module source code for examples.

• Document how to use more.static to include static resources into your application.

• Add a recursive=False option to the config.scan method. This allows the non-recursive scanning of a
package. Only its __init__.py will be scanned.

• To support scanning a single module non-recursively we need a feature that hasn’t landed in mainline Venusian
yet, so depend on Venusifork for now.

• A small optimization in the publishing machinery. Less work is done to update the generic function lookup
context during routing.

1.26.16 0.3 (2014-06-23)

• Ability to absorb paths entirely in path directive, as per issue #132.

• Refactor of config engine to make Venusian and immediate config more clear.

• Typo fix in docs (Remco Wendt).

• Get version number in docs from setuptools.

• Fix changelog so that PyPI page generates HTML correctly.

• Fix PDF generation so that the full content is generated.

• Ability to mark a view as internal. It will be available to request.view() but will give 404 on the web. This
is useful for structuring JSON views for reusability where you don’t want them to actually show up on the web.

126 Chapter 1. Table of Contents

Morepath Documentation, Release 0.13.2

• A request.child(something).view() that had this view in turn call a request.view() from the
context of the something application would fail – it would not be able to look up the view as lookups still
occurred in the context of the mounting application. This is now fixed. (thanks Ying Zhong for reporting it)

Along with this fix refactored the request object so it keeps a simple mounted attribute instead of a stack of
mounts; the stack-like nature was not in use anymore as mounts themselves have parents anyway. The new
code is simpler.

1.26.17 0.2 (2014-04-24)

• Python 3 support, in particular Python 3.4 (Alec Munro - fudomunro on github).

• Link generation now takes SCRIPT_NAME into account.

• Morepath 0.1 had a security system, but it was undocumented. Now it’s documented (docs now in Morepath
Security), and some of its behavior was slightly tweaked:

– new verify_identity directive.

– permission directive was renamed to permission_rule.

– default unauthorized error is 403 Forbidden, not 401 Unauthorized.

– morepath.remember and morepath.forbet renamed to morepath.remember_identity
and morepath.forget_identity.

• Installation documentation tweaks. (Auke Willem Oosterhoff)

• .gitignore tweaks (Auke Willem Oosterhoff)

1.26.18 0.1 (2014-04-08)

• Initial public release.

1.27 History of Morepath

For more recent changes, see CHANGES.

Morepath was written by Martijn Faassen (me writing this document).

The genesis of Morepath is complex and involves a number of projects.

1.27.1 Web Framework Inspirations

Morepath was inspired by Zope, in particular its component architecture; a reimagined version of this is available in
Reg, a core dependency of Morepath.

An additional inspiration was the Grok web framework I helped create, which was based on Zope 3 technologies, and
Pyramid, a reimagined version of Zope 3, created by Chris McDonough.

Pyramid in particular has been the source of a lot of ideas, including bits of implementation.

Once the core of Morepath had been created I found there had been quite a bit of parallel evolution with Flask. Flask
served as a later inspiration in its capabilities and documentation. Morepath also used Werkzeug (basis for Flask) for
a while to implement its request and response objects, but eventually I found WebOb the better fit for Morepath and
switched to that.

1.27. History of Morepath 127

http://blog.startifact.com/posts/morepath-security.html
http://blog.startifact.com/posts/morepath-security.html

Morepath Documentation, Release 0.13.2

1.27.2 Configuration system

In 2006 I co-founded the Grok web framework. The fundamental configuration mechanism this project uses was
distilled into the Martian library:

https://pypi.python.org/pypi/martian

Martian was reformulated by Chris McDonough (founder of the Pyramid project) into Venusian, a simpler, decorator
based approach:

https://pypi.python.org/pypi/venusian

Morepath originally used Venusian as a foundation to its configuration system. I like the way Venusian separates
decorators from their execution, but Venusian also makes setup more difficult to reason about for users than simply
registering the decorator with the configuration system during import-time.

Morepath’s configuration system had grown over time and had grown a few hacks here and there. Removing Venusian
was not simple as a result, plus I had a long-standing issue where I wanted to document the configuration system
properly.

So in 2016 I extracted Morepath’s configuration system into its own reusable project, called dectate. I also extensively
refactored it and removed the Venusian dependency. Morepath now uses Dectate as a clean and well-documented
configuration system.

1.27.3 Routing system

In 2009 I wrote a library called Traject:

https://pypi.python.org/pypi/traject

I was familiar with Zope traversal. Zope traversal matches a URL with an object by parsing the URL and going through
an object graph step by step to find the matching object. This works well for objects stored in an object database, as
they’re already in such a graph. I tried to make this work properly with a relational database exposed through an ORM,
but noticed that I had to adjust the object mapping too much just to please the traversal system.

This led me to a routing system, so expose the relational database objects to a URL. But I didn’t want to give up some
nice properties of traversal, in particular that for any object that you can traverse to you can also generate a URL. I
also wanted to maintain a separation between models and views. This led to the creation of Traject.

I used Traject successfully in a number of projects (based on Grok). I also ported Traject to JavaScript as part of the
Obviel client-side framework. While Traject is fairly web-framework independent, to my knowledge Traject hasn’t
found much adoption elsewhere.

Morepath contains a further evolution of the Traject concept (though not the Traject library directly).

1.27.4 Reg

In early 2010 I started the iface project with Thomas Lotze. In 2012 I started the Crom project. Finally I combined
them into the Comparch project in 2013. I then renamed Comparch to Reg, and finally converted Reg to a generic
function implementation.

See Reg’s history section for more information on its history. The Reg project provides the fundamental registries that
Morepath builds on.

1.27.5 Publisher

In 2010 I wrote a system called Dawnlight:

128 Chapter 1. Table of Contents

https://pypi.python.org/pypi/martian
https://pypi.python.org/pypi/venusian
http://dectate.readthedocs.org
https://pypi.python.org/pypi/traject
http://blog.startifact.com/posts/reg-now-with-more-generic.html
http://blog.startifact.com/posts/reg-now-with-more-generic.html
http://reg.readthedocs.org/en/latest/history.html

Morepath Documentation, Release 0.13.2

https://bitbucket.org/faassen/dawnlight

It was the core of an object publishing system with a system to find a model and a view for that model, based on a
path. It used some concepts I’d learned while implementing Traject (a URL path can be seen as a stack that’s being
consumed), and it was intended to be easy to plug in Traject. I didn’t use Dawnlight myself, but it was adopted by the
developers of the Cromlech web framework (Souheil Chelfouh and Alex Garel):

http://pypi.dolmen-project.org/pypi/cromlech.dawnlight

Morepath contains a reformulation of the Dawnlight system, particularly in its publisher module.

1.27.6 Combining it all

In 2013 I started to work with CONTACT Software. They encouraged me to rethink these various topics. This led me
to combine these lines of development into Morepath: Reg registries, decorator-based configuration using Venusian,
and traject-style publication of models and resources.

1.27.7 Spinning a Web Framework

In the fall of 2013 I gave a keynote speech at PyCon DE about the creative processes behind Morepath, called “Spin-
ning a Web Framework”:

1.27. History of Morepath 129

https://bitbucket.org/faassen/dawnlight
http://pypi.dolmen-project.org/pypi/cromlech.dawnlight

Morepath Documentation, Release 0.13.2

130 Chapter 1. Table of Contents

CHAPTER 2

Indices and tables

• genindex

• modindex

• search

131

Morepath Documentation, Release 0.13.2

132 Chapter 2. Indices and tables

Python Module Index

m
morepath, 90

133

Morepath Documentation, Release 0.13.2

134 Python Module Index

Index

A
after() (morepath.Request method), 100
ancestors() (morepath.App method), 97
App (class in morepath), 90
app (morepath.Request attribute), 102
argument_and_explicit_converters()

(morepath.converter.ConverterRegistry
method), 104

as_dict() (morepath.security.Identity method), 103
autocommit() (in module morepath), 99
autoscan() (in module morepath), 98
autosetup() (in module morepath), 99

B
BasicAuthIdentityPolicy (class in morepath.security), 103
body_obj (morepath.Request attribute), 102

C
child() (morepath.App method), 97
class_link() (morepath.Request method), 100
commit() (in module morepath), 99
Converter (class in morepath), 104
converter() (morepath.App class method), 90
converter_for_explicit_or_type()

(morepath.converter.ConverterRegistry
method), 104

converter_for_explicit_or_type_or_list()
(morepath.converter.ConverterRegistry
method), 104

converter_for_type() (morepath.converter.ConverterRegistry
method), 104

converter_for_value() (morepath.converter.ConverterRegistry
method), 104

ConverterRegistry (class in morepath.converter), 104

D
defer_links() (morepath.App class method), 90
dump_json() (morepath.App class method), 91

E
explicit_converters() (morepath.converter.ConverterRegistry

method), 105

F
forget() (morepath.security.BasicAuthIdentityPolicy

method), 103
forget() (morepath.security.IdentityPolicy method), 103
function() (morepath.App class method), 91

H
html() (morepath.App class method), 91

I
identify() (morepath.security.BasicAuthIdentityPolicy

method), 103
identify() (morepath.security.IdentityPolicy method), 103
Identity (class in morepath.security), 102
identity (morepath.Request attribute), 102
identity_policy() (morepath.App class method), 92
IdentityPolicy (class in morepath.security), 103

J
json() (morepath.App class method), 92

L
link() (morepath.Request method), 101
link_prefix() (morepath.App class method), 92
link_prefix() (morepath.Request method), 101
load_json() (morepath.App class method), 92
lookup (morepath.App attribute), 97
lookup (morepath.Request attribute), 102

M
morepath (module), 90
mount() (morepath.App class method), 93

N
NO_IDENTITY (in module morepath.security), 104

135

Morepath Documentation, Release 0.13.2

P
parent (morepath.App attribute), 97
path() (morepath.App class method), 93
permission_rule() (morepath.App class method), 94
predicate() (morepath.App class method), 94
predicate_fallback() (morepath.App class method), 94

R
redirect() (in module morepath), 100
register_converter() (morepath.converter.ConverterRegistry

method), 105
remember() (morepath.security.BasicAuthIdentityPolicy

method), 104
remember() (morepath.security.IdentityPolicy method),

103
render_html() (in module morepath), 102
render_json() (in module morepath), 102
Request (class in morepath), 100
request() (morepath.App method), 97
request_class (morepath.App attribute), 90
resolve_path() (morepath.Request method), 101
Response (class in morepath), 102
root (morepath.App attribute), 97
run() (in module morepath), 99

S
scan() (in module morepath), 98
set_trace() (in module morepath.pdbsupport), 105
setting() (morepath.App class method), 94
setting_section() (morepath.App class method), 95
settings (morepath.App attribute), 98
settings() (in module morepath), 100
sibling() (morepath.App method), 97

T
template_directory() (morepath.App class method), 95
template_loader() (morepath.App class method), 95
template_render() (morepath.App class method), 95
tween_factory() (morepath.App class method), 96

V
verify_identity() (morepath.App class method), 96
view() (morepath.App class method), 96
view() (morepath.Request method), 101

136 Index

	Table of Contents
	Morepath: Super Powered Python Web Framework
	Quickstart
	Community
	Installation
	Superpowers
	A Review of the Web
	Paths and Linking
	Views
	Templates
	Configuration
	JSON and objects
	Security
	REST
	Settings
	Organizing your Project
	Directive tricks
	Logging
	App Reuse
	Building Large Applications
	Tweens
	Static resources with Morepath
	API
	Comparison with other Web Frameworks
	Design Notes
	Developing Morepath
	CHANGES
	History of Morepath

	Indices and tables
	Python Module Index

